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Abstract: The problem of construction of the deterministic dynamical system from 

output signals (reconstruction) is very important. Two reconstruction methods have been 

used and compared. First one is the method of successive differentiation and the second 

is based on delay coordinates. It was firstly suggested to choose time delay parameter 
from the stable region of a divergence of the reconstructed system. Results show that 

both methods can capture regular and chaotic signals from reconstructed systems of the 

third order with nonlinear terms up to sixth order. Types of signals were examined with 

spectral methods, construction of phase portraits and Lyapunov exponents. 
Keywords: Reconstruction, Dynamical system, Chaotic regime, Successive 

differentiation, Delay time. 

 
1    Introduction 

The problem of reconstruction of deterministic dynamical system from output 

signals is of great importance in studying of properties of experimental signals 

such as acoustic signals, ECG, EEG and so on. Reconstructed dynamical system 

may add a significant qualitative information to chaotic data analysis. Stability 

conditions, bifurcation curves, all types of steady – state regimes could be 

studied for solutions of a reconstructed system. Two reconstruction methods 

have been developed by Crutchfield and McNamara [1] and used for variety of 

signals later [2-4]. The first method is based on suggestion that the signal can be 

presented by a function that has at least three derivatives, so this is method of 

successive differentiation. Applying this method the dynamical system has a 

following form [1-4]: 
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where ),,( 3213 xxxF  is a nonlinear function. The second method of 

reconstruction is based on delay coordinates. We need to reconstruct the 

dynamical system from the time series of some state variable )(tx  with the 

fixed sampling step dt . We have series of )( kdtxsk  , k=0,1,2,…,N, using 

value of time delay ndt  (which is chosen to yield optimal reconstruction 

[1]) we construct the dynamical system in the form [1-4]: 
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where )()(1 txtx  ; )()(2  txtx ; )2()(3  txtx , ),,( 321 xxxFi  

are nonlinear functions. 

 

2    Construction of Dynamical Systems from Output Signals of 

Pendulum System 

Reconstruction methods are applied to the signals of a deterministic dynamical 

system of pendulum oscillations which may have regular and chaotic regimes 

[5]: 
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Nonlinear functions ),,( 321 xxxFi  in the first and second systems  have the 

following form: 
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with nonlinear terms up to third order for the regular signals and up to the six 

order for the chaotic. 

The traditional way to obtain time delay parameter ndt  for the second 

method of reconstruction is to use time interval when the autocorrelation 

function is equal to zero [2-4]. For such chosen   the divergence of a 
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reconstructed system may not be negative. So that we introduce other way to 

choose  . Real system is nonconservative and, the divergence of systems 

should be negative too. For example, for the original pendulum system  div  is 

equal to -0.81. In Figure 1 the dependence of reconstructed systems divergence 

on n  in the steady – state regimes is shown. We choose n  for time delay   

from the stable region of div .  

 

 
a)  

 
b) 

Fig. 1. The dependence of reconstructed systems divergence on n  for  regular 

initial signal 257.0F  (case a) and chaotic 114.0F  (case b). 

 
For every value of the bifurcation parameter F  from the interval 

3.01.0  F  the reconstructed systems were built and the output signals 

were determined. And then the largest Lyapunov exponents [6] were calculated. 

For that purpose we use the fifth – order Runge – Kuttas method with the 

precision of )10( 7O . Initial conditions were selected in the vicinity of the 

original signal, and for the steady – state regime signals we choose 

,218N 004.0dt . 

The dependence of the largest Lyapunov exponent of the pendulum system  on 

values of the bifurcation parameter F  is shown in Figure 2.a. The dependences 

of the largest Lyapunov exponent on  F  for the first and the second 

reconstructed dynamical systems are shown in Figure 2.b – c correspondingly. 

 

 
a) 

 
b) 

 
c) 

Fig. 2.The largest Lyapunov exponent of the pendulum system (case a) and of 

the reconstructed systems  (cases b and c). 

 

, 
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We may see similarity of both graphs to the dependence for the original system 

in Figure 2.a with the exception of the region  18.015.0  F  where the 

transition to chaos occurs. 

 

2    Construction Systems from Regular Output Signal 

As was shown in the book [5] the solution of the pendulum system would be 

regular if bifurcation parameter is F=0.257. We used this value and solved the 

system in order to get the output signal. Then we reconstruct the system using 

the two methods. 

For the second method we reconstruct the system using small initial value for 

the delay parameter and build the dependence of the divergence on value n  and 

choose n  from the stable interval of the  delay parameter (Figure 1.a, n=240). 

As the result the system get the form with nonlinear terms only to the third order 

of nonlinearity. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

Fig. 3.  The portrait of initial pendulum system (F=0.257), case a , the portraits 

of the reconstructed systems, cases b–c, their time realizations, cases d–f, and 

power spectrums, cases g–i. 

 
Projections of the limit cycle with two loops on the plane are shown in Figure 3. 

a–c for the solution of the original system (Figure 3.a) and the reconstructed 
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first and second dynamical systems   (Figure 3.b–c). Since for reconstruction we 

use only the first variable signal phase portrait projections on the plane with the 

second variable only qualitatively are look like the original limit cycle with two 

loops. Time realizations of the first variable and their power spectrums are 

presented in Figure 3.d–i. Figure 3.d and Figure 3.g describes the solution of the 

original system, and Figure 3.e–f and Figure 3.h– i gives the information about 

solutions of the reconstructed dynamical systems. 

Since power spectrum indicates the power contained at each frequency, the peak 

heights corresponds to the squared wave amplitudes (i.e. the wave energy) at the 

corresponding frequencies. The first method of reconstruction gives the solution 

which the power spectrum for the regular signals coincides with the output 

signal power spectrum up to 96% for the first three peaks. The second method 

gives the precision up to 98%. Also the second method determines the 

maximum Lyapunov exponent more precisely for chaotic regimes (with a 

precision to
310( O ) )  than the first method. 

 

3. Construction Systems from Chaotic Output Signal 

Now we use such parameter F for the pendulum original system when this 

system has the chaotic solution, namely F=0.114. Then we reconstruct the 

system using the two methods of reconstruction with nonlinear function 

),,( 321 xxxFi   with nonlinear terms up to the sixth order. For the second 

method we reconstruct the system using small initial value for the delay 

parameter and build the dependence of the divergence on value n  and choose 

n  from the stable interval of the  delay parameter  ( Figure 1.b, n=240). 

Projections of the chaotic attractor of the initial system and of the reconstructed 

systems are shown in Figure 4.a–c. As could be seen from Figure 4 the both 

methods qualitatively good approximate chaotic attractor of  the original system. 

Time realizations of the chaotic attractors after finished transient regimes are 

also similar and given in Figure 4.d–f. Power spectrums for the original signal 

and for the signals from the reconstructed systems are shown in Figure 4.g– i 

and may be approximated by the same decay function fS 5.875.6  . 

 

 
a) 

 
b) 

 
c)  
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d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

Fig. 4.  The portrait of initial system (case a) (F=0.114),  the portraits of the 

reconstructed systems  (cases b –c), their time realizations (d –f) and power 

spectrums (g–i). 

 
3    Construction System from Synthetic ECG Signal 

As practical application of the considered methods the signal of a dynamical 

model for generating synthetic electrocardiogram signals [9] was used. This 

signal is regular and outwardly looks like the electrocardiogram of healthy man. 

Using the method of delay the system of eighth order was built. In Figure 5 

temporal realization is represented by synthetic electrocardiogram. In Figure 6 

temporal realization of the first coordinate of  the solution of the reconstructed 

system is represented. As is obvious from graphs both signals are regular and 

have an identical period of oscillations. 

 

 

Fig. 5. Synthetic electrocardiogram signal. 
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Fig. 6. Signal generated by reconstructed system. 

 

4    Conclusions 

 

Results show that both methods can capture regular and chaotic signals from 

reconstructed systems of the third order with nonlinear terms up to sixth order. 

Types of signals were examined with spectral methods, construction of phase 

portraits and Lyapunov exponents.  The first method gives the solution which 

the power spectrum for the regular signals coincides with the output signal 

spectrum up to 96 % for the first three peaks. The second method gives a 

mistake around 2 %. And the second method determines the maximum 

Lyapunov exponent more precisely for chaotic regimes (with a precision 

to
310( O ) ) than the first method. 

Real systems are nonconservative and, a divergence of systems should be 

negative. It was suggested for the first time that the delay parameter for the 

second reconstruction method must be chosen from the stable region of the 

divergence behaviour of the reconstructed system. 

The both methods qualitatively good approximate the phase portrait of chaotic 

attractor of the original system. Moreover, time realizations of the chaotic 

attractors after finished transient regimes are quiet similar. And what is more 

important, power spectrums for the original signal and for the signals from the 

reconstructed systems may be approximated by the same decay function 

fS 5.875.6  . Calculations also show that more precisely the value of 

bifurcation parameter for chaotic regimes gives the second method of 

reconstruction.   
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