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Deterministic coherence resonance in systems
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Abstract. Coherence resonance consists in the increase of regularity of an output
signal of a nonlinear device for non-zero intensity of input noise. This phenomenon
occurs, e.g., in stochastic systems with delayed feedback in which external noise am-
plifies the periodic component of the output signal with the period equal to the
delay time. In this contribution it is shown that in chaotic systems with delayed
feedback deterministic (noise-free) coherence resonance can occur, which consists in
the maximization of the periodic component of the output signal in the absence of
stochastic noise, due to the changes in the internal chaotic dynamics of the system
as the control parameter is varied. This phenomenon is observed in systems with
on-off intermittency and attractor bubbling, including generic maps and systems of
diffusively coupled chaotic oscillators at the edge of synchronization. The occurrence
of deterministic coherence resonance for the optimum value of the control parame-
ter (e.g., of the coupling strength between synchronized oscillators) is characterized
by the appearance of a series of maxima at the multiples of the delay time in the
probability distribution of the laminar phase lengths, superimposed on the power-law
trend typical of on-off intermittency, and by the presence of a strong maximum in
the power spectrum density of the output signal.
Keywords: on-off intermittency, coherence resonance, delayed feedback.

1 Introduction

On-off intermittency (OOI) is a sort of extreme bursting which occurs in sys-
tems posessing a chaotic attractor within an invariant manifold whose dimen-
sion is less than that of the phase space [1,2]. As a control parameter crosses a
certain threshold this attractor undergoes a supercritical blowout bifurcation
[3] and loses transverse stability, and a new attractor is formed which encom-
passes that contained within the invariant manifold. Just above the blowout
the phase trajectory stays for long times close to the invariant manifold and
occasionally departs from it; if the distance from the invariant manifold is an
observable, this results in a sequence of laminar phases and bursts. The dis-
tribution of laminar phase lengths τ obeys a power scaling law P (τ) ∝ τ−3/2

[1]. In the presence of additive noise chaotic bursting occurs below the blowout
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bifurcation threshold; this phenomenon is known as attractor bubbling [2,4].
OOI and attractor bubbling were observed in systems as diverse as model maps
with time-dependent control parameter [1], chaotic synchronization [5], spin-
wave chaos [6], microscopic models of financial markets [7], etc.

The role of delayed feedback is important in many systems, e.g. optical res-
onators, chemical reactions and physiology [8] or chaos control [9,10]. In this
paper the influence of delayed feedback on OOI is studied using generic one-
dimensional maps with a time-dependent control parameter and synchronized
oscillators. It is shown that addition of delayed feedback changes the threshold
for the blowout bifurcation and can influence the character of the intermit-
tent bursting: For optimum choice of the control parameter a strong periodic
component in the time series above the blowout occurs, with the period equal
to the delay time. This is an example of coherence resonance (CR) [11-18],
a phenomenon related to the well-known stochastic resonance (SR) [19]. CR
manifests itself as the peak of regularity of the output signal of certain non-
linear stochastic systems for optimum intensity of the input noise and without
any external periodic stimulation. In particular, CR was observed in systems
with delayed fedback, including bistable [16] and excitable [17] ones and sim-
ple threshold crossing detectors [18]. Since in the models under consideration
the role of external noise is played by the internal chaotic dynamics within
the invariant manifold, the observed phenomenon is deterministic CR [20], a
counterpart of the noise-free (deterministic) SR [21].

2 Modeling with a Logistic Map with a time-dependent
control parameter and delayed feedback

As a basic model let us consider the logistic map with the time-dependent
control parameter and delayed feedback

yn+1 = (1−K) aζnyn (1− yn) +Kyn−k, (1)

where 0 < K < 1 is the amplitude of the feedback term and ζn ∈ (0, 1) denotes
any chaotic process constrained to the unit interval. The map in Eq. (1) has
the invariant manifold yn = 0 with the chaotic attractor (ζn ∈ (0, 1), yn = 0)
within it. For a > ac the variable yn exhibits intermittent bursts, where ac is
the blowout bifurcation threshold dependent on ζn. For K = 0 Eq. (1) is the
generic model for OOI [1]. The qualitative properties of OOI are independent
of the details of the dynamics within the invariant manifold provided that the
correlation time of the process ζn is negligible in comparison with the mean
time between bursts, which is true just above the threshold for the blowout
bifurcation; hence, ζn can be approximated by white noise ξn uniformly dis-
tributed on (0, 1) [1]. It should be also noted that Eq. (1) with the control
parameter constant in time, i.e., with ζn ≡ 1, (the logistic map with delayed
feedback) can serve as a model for chaos control [10].

For yn ≈ 0 the dynamics transverse to the invariant manifold is well ap-
proximated by a linearization of Eq. (1),

yn+1 ≈ (1−K) aζnyn +Kyn−k. (2)
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Introducing new variables in the direction transverse to the invariant manifold,

y
(1)
n = yn, y

(2)
n = yn−k, . . ., y

(j)
n = yn−k+j−2, . . ., y

(k+1)
n = yn−1 [10] Eq. (2) can

be written as a linear transformation

yn+1 = M̂nyn, (3)

where yn =
(
y
(1)
n , y

(2)
n , . . . , y

(k+1)
n

)T
(thus, yn = 0 is the invariant manifold),

and

M̂n =


(1−K) aζn K 0 0 . . . 0

0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 0

 . (4)

The transverse stability of the attractor within the invariant manifold is con-
trolled by the transverse Lyapunov exponent λT [1-3],

λT = lim
N→∞

1

N
ln

∣∣∣∣∣∣M̂N−1 . . . M̂2M̂1y0

∣∣∣∣∣∣
||y0||

, (5)

where y0 is an arbitray initial vector transverse to the invariant manifold (in
simulations, y0 is assumed as a random vector of unit length). The exponent
λT increases with a from negative to positive values and crosses zero at the
threshold for the blowout bifurcation a = ac, corresponding to the onset of
OOI.

The dependence of ac on K for the map (1) with ζn = ξn and various k is
shown in Fig. 1(a). The value of ac weakly depends on k and monotonically
decreases to ac = 2.0 for K → 1. Typical time series yn for a just above ac is
shown in Fig. 1(b). For increasing K the character of the time series changes
from intermittent bursts with high amplitude typical of OOI to frequent bursts
with small amplitude. There is also a gap between the minimum value of yn
and the invariant manifold yn = 0. Thus the effect of the delayed feedback on
the generic model for OOI resembles that of additive noise which prevents the
phase trajectory from approaching closely the invariant manifold and lowers
the threshold for the occurrence of bursting, leading to attractor bubbling
[2,4]. This is not surprising since the additive noise enters Eq. (1) in the same
way as the feedback term; moreover, especially for long k, due to decreasing
correlation, the feedback term can be treated as a sort of deterministic noise.

For K > 0 the distribution of laminar phase lengths P (τ) for a just above
ac exhibits a series of maxima at the values of τ equal to k and its multiples
(Fig. 1(c)) superimposed on a power-law trend typical of OOI. Let us define
the output signal as Zn = 0 if yn is in the laminar phase and Zn = 1 if yn
is in the burst phase (such discretization is typical in the study of systems
with SR). Then, a broad peak centered at the frequency 2π/k appears in the
power spectrum density (PSD) of Zn (Fig. 1(d)). Both absolute and relative
(with respect to the mean value of the PSD on the interval (π/k, 3π/k)) height
of this peak exhibit maximum as functions of a (Fig. 1(e)); these quantities
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Fig. 1. For the map given by Eq. (1) with ζn = ξn: (a) intermittency threshold ac
vs. K for various k (see legend); (b) time series yn(t) for k = 20, K = 0.2, a = 2.2
(just above ac), the initial condition is y0 ∈ (0, 1), where y0 is a random number, and
y−1 = y−2 = . . . y−k+1 = 0; (c) histogram of the number of laminar phases N(τ) of
duration τ for k = 20, K = 0.3, a = 2.1, yn was assumed to be in the burst phase
(Zn = 1) if yn > 0.01, vertical lines are drawn at multiples of k; (d) PSD from the
time series Zn for k = 64, K = 0.3, a = 2.1; (e) SPA (dots) and 250 SNR (circles) vs.
a for k = 64, K = 0.3.

correspond to the spectral power amplification (SPA) and signal-to-noise ratio
(SNR) used in the studies of SR, respectively. The height of these maxima
increases, their width decreases and their location approaches a = ac as K → 1
since then the feedback term becomes dominant in Eq. (1) and the signal Zn

is almost periodic for a just above ac.

These results show that CR occurs in the map (1) as the control parameter
is increased above the threshold for the blowout bifurcation. In fact, systems
with OOI resemble excitable ones, in particular just above the intermittency
threshold when the bursts are short in comparison with the quiescent laminar
phases. Thus, CR in the map (1) resembles that observed in excitable sys-
tems and threshold-crossing detectors with delayed feedback and external noise
[17,18], e.g., the multiple maxima in the histogram of laminar phase lengths in
Fig. 1(c) correspond to those found in the histograms of inter-spike intervals in
excitable systems with CR [12]. However, CR in the map (1) appears due to
changes of the internal dynamics within the invariant manifold as the control
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parameter is varied rather than under the influence of external noise. Thus,
this phenomenon belongs to the class of deterministic CR as in Ref. [20].

3 Modeling with a system of two diffusively coupled
chaotic Rössler oscillators

Similar phenomena were observed in a system of two diffusively coupled chaotic
Rössler oscillators,

ẋ1 = − (y1 + z1)

ẏ1 = x1 + ay1 + k (y2 − y1) +Ks(τ)

ż1 = b+ z1 (x1 − c)
ẋ2 = − (y2 + z2)

ẏ2 = x2 + ay2 + k (y1 − y2)−Ks(τ)

ż2 = (b+ δb) + z2 (x2 − c) , (6)

where a = 0.2, b = 0.2, c = 11, k is the strength of the diffusive coupling,
s(τ) = y2(t− τ)− y1(t− τ) = ∆y (t− τ) provides delayed feedback with delay
τ and amplitude K, and small δb 6= 0 can be added to model the mismatch of
parameters in an experimental system. For K = 0 and δb = 0 the oscillators
are identically synchronized for k > kc ≈ 0.12 and there is a chaotic attractor
within the invariant synchronization manifold x1 = x2, y1 = y2, z1 = z2. For
k < kc synchronization is lost (i.e., the invariant manifold loses transverse
stability) and ∆y(t) = y2(t) − y1(t) exhibits chaotic bursts typical of OOI;
thus, k is the control parameter for the supercritical blowout bifurcation. For
δb 6= 0 bursts occur already for k > kc due to attractor bubbling. Similarily,
the delayed feedback Ks(τ) with K > 0 also forces the trajectory to leave the
invariant mainfold, as in Eq. (1), and causes the onset of intermittent bursts
for k > kc.

Typical time series ∆y(t) exhibiting OOI are shown in Fig. 2(a). If, again,
the output signal is defined as Z(t) = 0 if ∆y(t) is in the laminar phase and
Z(t) = 1 if ∆y(t) is in the burst phase, a broad peak centered at the frequency
2π/τ appears in the PSD of Z(t) for a range of k below and just above kc
(Fig. 2(b)). The height of this peak (SPA) exhibits maximum as a function
of k, both for δb = 0 and δb > 0 (Fig. 2(c)); in the latter case only the range
of the control parameter where the bursts are observed is slightly broadened
toward higher values. This demonstrates that deterministic CR occurs in the
system given by Eq. (6) and the output signal exhibits maximum regularity for
optimum value of the parameter k which controls the internal dynamics within
the invariant synchronization manifold. The maximum of the SNR vs. k is not
clearly visible (Fig. 2(d)): evaluating PSD from much longer time series would
probably lead to smoother curves of the SNR. Hence, the results of numerical
simulations suggest that deterministic CR can be observed experimantally in
systems of coupled chaotic oscillators at the edge of identical synchronization.
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Fig. 2. For the system of diffusively coupled Rössler oscillators given by Eq. (6) with
τ = 512, K = 0.05, (a) time series ∆y(t) for k = 0.12, δb = 10−4; (b) PSD from
the time series Z(t) for k = 0.12, δb = 10−4, ∆y(t) was assumed to be in the burst
phase (Z(t) = 1) if ∆y(t) > 0.1; (c) SPA and (d) SNR vs. k for δb = 0 (circles) and
δb = 10−4 (dots)

4 Summary

To summarize, the influence of delayed feedback on OOI was studied using
generic maps with the time-dependent control parameter and synchronized
chaotic oscillators. It was found that delayed feedback can decrease the thresh-
old for the blowout bifurcation. Deterministic CR was observed in systems
under consideration, characterized by the appearance of a series of maxima at
the multiples of the delay time in the probability distribution of the laminar
phase lengths, superimposed on the power-law trend typical of OOI, and by
the presence of a strong periodic component in the intermittent time series,
with period equal to the delay time. The strength of this component exhibits
maximum as the control parameter is varied, due to the changes of the internal
dynamics of the system within the invariant manifold.
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