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Abstract. Pseudo random numbers are used for various purposes. Pseudo random
number generators (PRNGs) are useful tools to provide pseudo random numbers.
The FIPS 140-2 test issued by the American National Institute of Standards and
Technologyhas been widely used for the verifications the statistical properties of the
randomness of the pseudo random numbers generated by PRNGs.

First this paper analyzes the FIPS 140-2 test. The results show that

e The required interval of the FIPS140-2 Monobit Test corresponds to the confident
interval with significant level « = 0.0001(1 — «).

o The required interval of the FIPS140-2 Pork Test corresponds to x? test with
significant level a = 0.0002(1 - «).

e The required intervals of the FIPS140-2 Run Test correspond to the confident
interval with significant level « = 0.00000016(1 — «).

Second this study considers a novel chaotic map (NCM), whose prototype is the
Lorenz three-dimensional Lorenz chaotic map. A NCP -based CPRNG is designed.
Using the FIPS 140-2 test measures the 1000 keystreams randomly generated by the
RC4 algorithm, and the 1000 keystreams generated by the CPRNG with perturbed
randomly initial conditions in the range |e| € [107*¢,107*]. The results show that the
statistical properties of the randomness of the sequences generated via the CPRNG
and the RC4 do not have significant differences. The results confirm once again that
suitable designed chaos-based PRNGs may generate sound random sequences, in par-
ticular for a replacement for the one-time pad system.

Keywords: FIPS 140-2 Test, Analysis in required intervals, Chaos-based pseudo-
random number generator, RC4, Randomness comparison..

1 Introduction

Pseudorandom numbers are important in applications such as in simulations of
physical systems[1], in cryptography[2], in Entertainment[3], and in protecting
computer systems. John von Neumann was the first contributor in computer-
based random number generators. Today algorithmic pseudorandom number
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generators (PRNGs) have replaced almost random number tables and hardware
random number generators in practical uses.

A algorithmic PRNG is an algorithm for generating sequences of numbers
that approximate the properties of random numbers. A poor PRNG will lead
to weak or guessable its keys, and leak the information which is prevented.
There are many designed tests for measuring the randomness quantities of
the sequences of numbers generated via PRNGs. The FIPS 140-2 test[4], the
SP800-22 test[5], and the Diehard Battery test[6] are popular tests to be used
in evaluating the randomness quantities of the sequence numbers deriving from
PRNGs.

Since Lorenz’s influential article[7] and Li and York’s pioneer paper [8], the
study of chaos has been rapidly developed. Matthews has first derived a chaotic
encryption algorithm and shown that it may be suitable for a replacement for
the one-time pad system[9].

Gdamez-Guzmdn et al. have considered a modified Chua’s circuit generator
of 5-scroll chaotic attractor and shown that it may have a potential application
to transmit encrypted audio and image information[11]. Stojanovski and Ko-
carev [10] have analyzed the application of a chaos-based PRNG. Li et al.[12]
have reported that using only 120 consecutive known plain-byres can broken
the whole secret key of a multiple one-dimensional chaotic map -based PRNG.
Yu et al[13] have introduced and analyzed a quadric polynomial chaotic map
based PRNG by the FIPS PUB 140-2 test.

This paper analyzes the standards of the randomness criteria of the FIPS
140-2 test, introduces a novel chaotic map (NCM), designs a NCM-based
PRNG. Using the FIPS 140-2 test measures and compares the randomness
performances of the NCM-based PRNG and the RC4 algorithm — a famous
algorithm PRNG used in computer prevent.

The rest of this paper is organized as follows. Section 2 discusses the
standards of the randomness criteria of the FIPS 140-2 test. Section 3 intro-
duces the NCM, stimulates numerically its dynamic orbits, designed the NCM-
based PRNG. Section 4 compares the randomness quantities of the NCM-based
PRNG and the RC4 PRNG. Section 5 gives concluding remarks.

2 Analysis of FIPS 140-2 Test

The FIPS 140-2 Test issued by the National Institute of Standard and Technol-
ogy consists of four tests: Monobit test, Pork test, Run test and Long Run test.
Each test needs a single stream of 20,000 one and zero bits from keystream gen-
eration. Any failure in the test means the sequence of stream must be rejected.
The four test are listed as for follows:

(1) Monobit test: Count the numbers N of “0” and “1” in the 20,000 bitstream,
respectively. The test is passed if the IV is fallen into the required interval
given in the second column in Table 1.

(2) Poker test: Divide a sequence of 20,000 into 5,000 consecutive 4-bit seg-
ments. Denote f(7) to be the number of each 4-bit valve ¢ where 0 < i < 15.
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Then calculate the following:
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16
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The test is passed if the IV is fallen into the required interval given in the
second column in Table 1.

(3) Run test: Run is defined as maximal sequence of consecutive bits of either
all '1” or all ‘0’ that is the part of a 20,000 bitstream. Count and store the
run bits with > 1. The test is passed if the length of each run is fallen into
the required interval listed in the second column in Table 1.

(4) Long Run test: The test is passed if there are no runs of length 26 or more.

Table 1. The required intervals of the FIPS 140-2 Monobit Test Pork Tests and
Run Test, and the calculated confident intervals of random sequences with different
significant level o’s. Here MT, PT, and RT represent the Monobit Test, the Pork
Test and the Run Test; k represents the length of the run of a tested sequence.

FIPS 140-2 Standard a=10"" Golomb’s
Required Interval |Confident Interval|Postulates
MT|  9,725~10,275 9,725~10,275 10000
a=2x10""1
PT 2.16~46.17 2.41~44.26 16.01

RT [FIPS 140-2 Standard] a =1.6 x 10~7 | Golomb’s

k Required Interval |Confident Interval|Postulates
1 2,315~2,685 2,315~2,685 2,500

2 1,114~1,386 1,119~1,381 1,250

3 527~723 532~718 625

4 240~384 247~378 313

5 103~209 110~203 156
6+ 103~209 110~203 156

Golomb has proposed three postulates on the randomness that pseudoran-
dom sequences should satisfy [14]:

1. Balance Property. In one period of a pseudorandom sequence, If the
period p is even, then the number of ones is equal to the number of zeros,
otherwise they differ only by one.

2. Run Distribution Property. In one period of a pseudorandom sequence,

the frequency of runs of length k is ok The numbers of the same length

one run and zero run are the same.
3. Ideal Autocorrelation Property. The autocorrelation function AC(k)
has two values for a period. Explicitly:

12 1 fork=mnp
AC(k) = — ZSiSiJrk =
P

— otherwise
b
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where 0’s of the sequence are replace by 1’s and 1’s by -1’s, s;s; denote the
multiplication of two bits s; and s;.

According to Golomb’s postulates (1) and (2), the ideal values of the N’s
of the Monobit test and the Run test should be those listed in the 4th column
in Table 1.

1. Monobit test analysis: Let € = €1¢5 - - - €, be an one and zero bit sequence
where n is the length of the bit string. Denote X; = 2¢; — 1, then S,, =
X1+ Xo+ - X, =2(e1+ €2+ -+e€,) —n. If € is a sequence of independent
identically distributed Bernoulli random variables, then[5]

Sn
Vn
where N(0,1) is a standard normal distribution.

The confident interval of S/ = €1 4+ €3 + - - - €, with significant level « is
given by

~ N(0,1)

§—§Z%§5;§E+@z

2 2 2

N

where Zs (Matlab command norminv(1—a/2)) is the inverse of the normal
cumulative distribution function. In the case n = 20,000 and « = 0.0001,
the calculated result is given in the second column in Table 1 which is the
same as the required interval given by the FIPS 140-2 test.

2. Run test analysis. Pick up the runs of length £ from an one and zero
bitstream and construct a new bit stream. Replace each one run of length
k by 1, and zero run of length k by 0. Then we obtain an one and zero
bit sequence €' = €}, - -- €, where n' is the length of the new bit string.
Assume ¢’ is a sequence of independent identically distributed Bernoulli
random variables, then similar to the analysis in the case of the Monobit
test, we obtain

S
~ N(0,1
v ~ MO
The confident interval of S), = €| + €, + - - - €/, with significant level « is
given by
n' vn/ n' v/
— — Za < S, < — Za
2 2 2T M T2 + 2 2

For an ideal 20,000 one and zero bit pseudorandom stream, the length n’
of a bit sequence € generated via the runs of length k should equal to
10000/2%. Let o = 1.6 x 1077, the calculated confident intervals are listed
in the second column in Table 1 which are almost the same as the required
intervals given by the FIPS 140-2 test.
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3. Poker test analysis. Assume the the 4-bit segments are distributed in-
dependently and identically. Then the statistic quality

16
~ 5000

5‘35000 (i) Lo

16
N > £(i)* = 5000
1=1

1/16(5000 16

i=1

obeys x2 distribution. Hence the confident interval of the statistic quality
of N with significant level « is given by

Xi_g (15) < N < X% (15),

where x2(15) (Matlab command chi2inv(a,15) ) is the inverse of the >
cumulative distribution function with free degree 15.

Let ae = 0.0002. The calculated confirmation interval is given in Table 1 which
is similar to the one given by the FIPS 140-2 test.

3 New Chaotic Map and Pseudorandom Number
Generator

we consider a novel chaotic map (NCM), whose prototype is the three-dimensional
Lorenz chaotic map [15].

X(n+1)=kXn)Y(n) —kZ(n) — k3 X(n)
Y(n + 1) = ]4}4X(Tl) — k‘5Y(TL)
Z(n+1)=keY(n) — ks Z(n)

where

ky=1-10"C%ky=1+10"5 ks =2x 107,
ky=1+10C% ks =3x10"%ks=1—-10"%k; =107C.

The Lyapunov exponents of the NCM are [\, A\a, A\3] = [+0.0824, 0, —0.0824].
If select an initial condition [Xy, Yo, Zo] = [0.5 0.5 -1], the numerical simulations
of the orbits of the NCM display are given in Fig. 1. Observe that the dynamic
patterns are similar to those of the 3D Lorenz map[15].

Let

Min(K)= min K,, Max(K)= max K,.
1<n<N 1<n<N

Define a transformation T' by

B 255v/2 x 10°(K,, — Min(K)) -
T(K,) = mod <r0und ( Man(K) — Min(K) > 7256) n=12---
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Fig. 1. Orbits of the first 5000 iterations: (a) X(n),Y(n),Z(n), and (b) X(n) and
Y (n).

Transferring T(K,) into binary codes, we obtain a binary sequence
s(k) = binary(T(K,)),n=1,2,--- /| N. (2)

Hence, we construct a chaos-based pseudorandom number generator (CPNG).

4 FIPS 140-2 test

The RC4 was designed by Ron Rivest of RSA Security in 1987, and widely
used in popular protocols such as Secure Sockets. Now we use the FIPS 140-2
test to test the 1000 keystreams randomly generated by the RC4, and the 1000
keystreams generated by the CPNG with an initial condition [X (0), Y (0), Z(0)]
=1[0.5, 0.5, -1] perturbed randomly in the range |e| € [10716,1074]. The results
are shown in Table 2. It follows that the statistical properties of the randomness
of the sequences generated via the CPNG and the RC4 do not have significant
differences.

Matlab commands for implement the RC4 algorithms are listed as follows.
L=8; K=randint(1,2"L,[0 2"L-1]);S=[0:2"L-1]; j=0;
for i=1:2""L
j=mod(j+S(i)+K(i),2"L);
Sk=S(j+1); S(j+1)=S(i); S(i)=Sk;
end
1=1; C=zeros(1,20000/8+10); j=0;i=0; k=1;
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for 1=1:20000/8+10; i=mod(i+1,2"L); j=mod(j+S(i+1),2"L);
Sk=S(j+1); S(j+1)=S(>i+1); S(i+1)=Sk;
C(k)=S(mod(S(j+1)+S(i+1),2"L)+1);
k=k+1;
end

Table 2. The confident intervals of the FIPS 140-2 tested values of 1000 key streams
generated by the RC4 and the CPNG respectively. The significant level. o = 0.00001

Test | bits | Golomb’s RC4 CPNG
item |{0, 1}|Postulates|Confident Interval|Confident Interval
MT 0 10000 9992.2 ~ 10012 | 9990.1 ~ 10010
1 10000 9988 ~ 10008 9989.6 ~ 10009
PT | - 16.01 14.408 ~ 15.899 | 13.373 ~ 13.914
LT 0 <26 13.443 ~ 13.971 | 13.405 ~ 13.913
1 < 26 13.340~13.872 13.328~ 13.823
LR Run Test
1 0 2500 2493.6 ~ 2506.9 | 2492.0 ~ 2504.9
1 2500 2493.7 ~ 2506.6 | 2489.9 ~ 2503.3
0 1250 1244.9 ~ 1253.8 | 1244.7~ 1253.9
2 1 1250 1242.6 ~ 1251.3 | 1243.6~ 1252.2
0 625 621.46 ~ 628 622.10 ~ 628.60
3 1 625 622.44 ~ 629.25 | 622.96 ~ 629.31
4 0 313 310.09 ~ 314.68 | 309.92~ 314.56
1 313 311.27 ~ 315.74 | 310.29~ 314.83
0 156 154.8 ~ 158.21 154.18~157.44
5 1 156 154.79 ~ 158.2 154.66~ 158.14
6+ 0 156 154.29 ~ 157.64 | 155.32~ 158.56
1 156 154.54 ~ 157.93 | 155.28 ~158.67

5 Concluding Remarks

Based on Golomb’s postulates for the randomness of pure pseudorandom se-
quences, this paper analyzes the required intervals of the statistic quantities
of three tests given in the FIPS 140-2. The results show that the required
intervals for different tests do not have the same significant levels.

This study introduces a perturbed 3D Lorenze discrete map. The Lyapunov
exponents and the dynamic orbits of the map are both similar to those of the
3D Lorenz map.

This paper constructs a chaos-based PRNG which has 7 key parameters.
This feature of the PRNG may make it have large key space. Comparing the
results of the FIPS 140-2 test for the RC4 PRNG and the chaos-based PRNG
shows that statistical properties of the randomness of the sequences generated
via the PRNG and the RC4 PRNG do not have significant differences.
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The results confirm once again that suitable designed chaos-based PRNGs
may generate sound random sequences, in particular for a replacement for the
one-time pad system[9]. Further research along this line is promising.
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