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Abstract. This paper presents the motion of a viscoelastic fluid in the interior of a
closed loop thermosyphon. A viscoelastic fluid described by the Maxwell constitutive
equation is considered for the study. This kind of fluids present elastic-like behaviors
and memory effects. Numerical experiments are performed in order to describe the
chaotic behavior of the solution for different ranges of the relevant parameters by
using the inertial manifold for this system proved in [1]. This work comes to verify
the complex nature of the behavior of viscoelastic fluids extending the result in [2]
when we consider a given heat flux instead of Newton’s linear cooling law.
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1 Introduction

Chaos in fluids subject to temperature gradients has been the subject of intense
work for its applications in the field of engineering or atmospheric sciences. A
thermosyphon is a device composed of a closed loop pipe containing a fluid
whose motion is driven by the effect of several actions such as gravity and
natural convection [3–5]. The flow inside the loop is driven by an energetic
balance between thermal energy and mechanical energy. The interest on this
system comes both from engineering and as a toy model of natural convection
(for instance, to understand the origin of chaos in atmospheric systems). The
theoretical results of the behavior of viscoelastic fluids of this model has been
proved in [1] but in this work we explore it numerically.

As viscoelasticity is, in general, strongly dependent on the material com-
position and working regime, here we will approach this problem by studying
the most essential feature of viscoelastic fluids: memory effects. To this aim
we restrict ourselves to the study of the so-called Maxwell model [6]. In this
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model, both Newton’s law of viscosity and Hooke’s law of elasticity are gener-
alized and complemented through an evolution equation for the stress tensor,
σ. The stress tensor comes into play in the equation for the conservation of
momentum:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · σ (1)

For a Maxwellian fluid, the stress tensor takes the form:

µ

E

∂σ

∂t
+ σ = µγ̇ (2)

where µ is the fluid viscosity, E the Young’s modulus and γ̇ the shear strain
rate (or rate at which the fluid deforms). Under stationary flow, the equation
(2) reduces to Newton’s law, and consequently, the equation (1) reduces to
the celebrated Navier-Stokes equation. On the contrary, for short times, when
impulsive behavior from rest can be expected, equation (2) reduces to Hooke’s
law of elasticity.

The derivation of the thermosyphon equations of motion is similar to that
in [3–5]. The simplest way to incorporate equation (2) into equation (1) is
by differentiating equation (1) with respect to time and replacing the resulting
time derivative of σ with equation (2). This way to incorporate the constitutive
equation allows to reduce the number of unknowns (we remove σ from the
system of equations) at the cost of increasing the order of the time derivatives
to second order. The resulting second order equation is then averaged along
the loop section (as in Ref.[3]). Finally, after adimensionalizing the variables
(to reduce the number of free parameters) we arrive at the main system of
equations

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf, v(0) = v0,

dv
dt (0) = w0

∂T

∂t
+ v

∂T

∂x
= h(x) + ν ∂

2T
∂x2 , T (0, x) = T0(x)

(3)

where v(t) is the velocity, T (t, x) is the distribution of the temperature of
the viscoelastic fluid in the loop, ν is the temperature diffusion coefficient,
G(v) is the friction law at the inner wall of the loop, the function f is the
geometry of the loop and the distribution of gravitational forces, h(x) is the
general heat flux and ε is the viscoelastic parameter, which is the dimensionless
version of the viscoelastic time, tV = µ/E. Roughly speaking, it gives the time
scale in which the transition from elastic to fluid-like occurs in the fluid. We
consider G and h are given continuous functions, such that G(v) ≥ G0 > 0,
and h(v) ≥ h0 > 0, for G0 and h0 positive constants. Finally, for physical
consistency, it is important to note that all functions considered must be 1-
periodic with respect to the spatial variable.

2 Inertial manifold: Finite dimensional asymptotic
behavior

In this section we summarize the main results related to the finite dimensional
asymptotic behavior of the system of equations (3) as proved in [1]. The ex-
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istence and uniqueness of the solutions of (3) was proved in [1] following the
techniques used in [2]. The main idea in [2] is that we rewrite our main equa-
tions (3) in terms of the Fourier expansions of each function and observing
the dynamics of each Fourier mode, where h, f ∈ L̇2

per(0, 1) are given by the
following Fourier expansions:

h(x) =
∑
k∈D

bke
2πkix, f(x) =

∑
k∈D

cke
2πkix

with D = D − {0} while T0 ∈ Ḣ1
per(0, 1) is given by

T0(x) =
∑
k∈D

ak0e
2πkix

and T (t, x) ∈ Ḣ1
per(0, 1) is given by

T (t, x) =
∑
k∈D

ak(t)e2πkix

where

L̇
2
per(0, 1) = {u ∈ L2

loc(IR), u(x+1) = u(x)a.e.,

∮
u = 0}, Ḣm

per(0, 1) = H
m
loc(IR)∩L̇2

per(0, 1). (4)

The coefficients ak(t) verify the equation:

ȧk(t) + (2πkvi+ 4νπ2k2)ak(t) = bk, ak(0) = ak0, k ∈ D.

Here, we assume that h ∈ Ḣm
per with

h(x) =
∑
k∈K

bke
2πkix

where bk 6= 0, for every k ∈ K ⊂ D with 0 /∈ K, since
∮
h = 0. We denote by Vm

the closure of the subspace of Ḣm
per generated by {e2πkix, k ∈ K}. If bk = 0 then

the kth mode for the temperature is dumped out exponentially and therefore
the space Vm attracts the dynamics for the temperature. Moreover if K is a
finite set, the dimension of M is |K|+ 2, where |K| is the number of elements
in K.

Under the above hypotheses we assume that

f(x) =
∑
k∈J

cke
2πkix

with ck 6= 0 for every k ∈ J ⊂ D. Then on the inertial manifold we have:∮
(T · f) =

∑
k∈K

ak(t)c̄k =
∑

k∈K∩J

ak(t)c̄k.

Therefore the evolution of velocity v, and acceleration w depends only on
the coefficients of T which belong to the set K ∩ J . From [1], using similar
techniques as in [7,8] we will reduce the asymptotic behavior of the initial
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system (3) to the dynamics of the reduced explicit nonlinear system of ODE’s
(5) where we consider the relevant modes of temperature ak, k ∈ K ∩ J.

dw

dt
+

1

ε
w +

1

ε
G(v)v =

1

ε

∑
k∈K∩J

ak(t)c̄k w(0) = w0

dv
dt = w, v(0) = v0

ȧk(t) + (2πkvi+ 4νπ2k2)ak(t) = bk, ak(0) = ak0, k ∈ K ∩ J.
(5)

Note that the set K ∩ J can be much smaller than the set K and therefore the
reduced subsystem may possess far fewer degrees of freedom than the system
on the inertial manifold. Also note that it may be the case that K and J are
infinite sets, but their intersection is finite. For instance, for a circular circuit
we have f(x) ∼ a sin(x) + b cos(x), i.e., J = {±1} and then K ∩ J is either
{±1} or the empty set.

3 Numerical experiments

3.1 Preliminary mathematical approximation

In this section, we integrate the system of ODEs (5), where we consider only
the coefficients of temperature ak(t) with k ∈ K ∩ J (relevant modes). Thus,

dw
dt + w

ε + G(v)v(t)
ε = 2

εReal
(∑

k∈K∩J ak(t)c̄k
)
w(0) = w0

dv
dt = w, v(0) = v0

ȧk(t) + ak(t)(2πkiv + ν4π2k2) = bk, ak(0) = ak0.
We impose that all the physical observable as real functions, then a−k = āk,

b−k = b̄k and c−k = c̄k. In particular, we consider a thermosyphon with a
circular geometry, so J = {±1} and K ∩J = {±1}. Consequently, we can take
k = 1 and omit the equation for k = −1 (is conjugated of the equation for
k = 1). Also in order to reduce the number of free parameters we make the
following change of variables a1c−1 → a1.

dw
dt = 2a1

ε −
w
ε −

G(v)v(t)
ε , w(0) = w0

dv
dt = w, v(0) = v0

ȧ1(t) + a1(t)(2πiv + ν4π2) = b1, a1(0) = a10.

We denote the real and imaginary parts of the a1(t) (the Fourier mode of
the temperature) in the following way:

a1(t) = a1(t) + ia2(t), (6)

b1 = A+ iB (7)

with A ∈ IR,B ∈ IR. Thus we obtain the corresponding nonlinear system of
equations where we need to make explicit choice of the constitutive laws for
both the fluid-mechanical and thermal properties for this model:

dw
dt = 2a1

ε −
w
ε −

G(v)v(t)
ε , w(0) = 0

v̇ = w, v(0) = 0

ȧ1 = A− ν4π2a1 + v2πa2, a1(0) = 1

ȧ2 = B − ν4π2a2 − v2πa1 a2(0) = 1.

(8)
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Hereafter, we present the numerical experiments of equations (5) that are
carried out for the resolution of the nonlinear system of ODEs using the fourth-
order explicit Runge-Kutta method. The summary of our results is presented
in the figures of section 3.2. In particular, we present the plots for velocity,
acceleration and (the fourier transform of the) temperature of this system. All
the variables and equations that we deal with are adimensional. As the system
is multidimensional, we present the results in temporal graphs (variables vs
time) and phase-space graphs (two physical variables plot against each other).

In all cases, we take the same mathematical form for the friction law, G(v) =
(|v|+10−4), as used in the previous works (see, for instance, [2,7,8]), for a similar
model of thermosyphon with a non-viscoelastic fluid with one component. The
rationale behind this equation is that it interpolates between a constant (low
Reynolds number laminar flow) and a linear (highly turbulent flow) function of
the velocity. Likewise, A and B, which refer to the position-dependant (x) heat
flux inside the loop will be used as tuning parameters. We will assume A = 0 in
order to simplify, as different values of A only changes the phase the periodic
function h(x). We will also fix B = 50 the heat flux parameter, ν = 0.002
the diffusion coefficient and observe the evolution of the variables. The initial
conditions are fixed to w(0) = 0, v(0) = 0, a1(0) = 1, a2(0) = 1. Finally, we
have also studied the behavior of the system of equations by keeping ε as a
tuning parameter ranging from 1 to 10, to observe the response of the system
under the effects of viscoelasticity.

3.2 The chaotic behavior of the model
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Fig. 1. The time evolution of the acceleration, w(t), with ε = 1, A = 0, B = 50,
ν = 0.002 and G(v) = (|v|+ 10−4)

The impact of ε on the system has been keenly observed for various pa-
rameters. In general (see below), as the viscoelastic component ε increases,
the chaotic behavior of the system also increases. In Fig. 1 we show the time
evolution of the acceleration, w(t), for the viscoelastic parameter ε = 1. The
acceleration w(t) ranges from -15 to 15. The plot is chaotic but, although this
is more apparent in the acceleration plot than in the velocity one. This is
reasonable as the velocity is the time integral of the acceleration, namely, the
velocity curve looks smoother than that of acceleration (therefore the chaotic
behavior is not so apparent).
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Fig. 2. Phase-plane of the real and imaginary parts of Fourier transform of the tem-
perature for ε = 1, A = 0, B = 50, ν = 0.002 and G(v) = (|v|+ 10−4).

In Fig. 2 we show the phase-diagram for the real a1(t) and imaginary a2(t)
parts of the Fourier transform of the temperature. As expected, the trajectory
in this phase-plane moves inwards and outwards. This plot illustrates the
underlying complex dynamics of the attractor as a two dimensional projection.
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Fig. 3. The time evolution of the acceleration, w(t), with ε = 3, A = 0, B = 50,
ν = 0.002 and G(v) = (|v|+ 10−4)

In the second set of numerical experiments we increase the value of vis-
coelastic component to ε = 3. As the value of viscoelastic component ε is
relatively higher than the previous experiment i.e., (ε = 3) the system tends to
be more chaotic than the previous experiment. The acceleration w(t) ranges
from -10 to 10. The deviation in the progress of acceleration is maintained
till the end of the progress. Apparently, the behavior is also chaotic but this
chaos seems to be embedded in larger timescale oscillations. Interestingly, the
number of oscillations is reduced from 15 to 9, Fig. 3 showing less number of
peaks than the first case. This is a reflection of the memory effects associated
to the viscoelastic of the fluid. Thus, as ε plays the role of a time scale, the
larger this value the longer are the memory effects (in our case exposed through
the period of the underlying oscillations).

For ε = 10 (Fig. 4), the system still exhibits a chaotic progression, with the
acceleration ranging from -4 to 4 and with even an underlying longer-period
oscillations compared to the previous experiments.

Finally, in Fig. 5 we show the phase-diagram for a1(t) and a2(t). Again,
as expected, the trajectory in this phase-plane moves inwards and outwards.
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Fig. 4. The time evolution of the acceleration, w(t), with ε = 10, A = 0, B = 50,
ν = 0.002 and G(v) = (|v|+ 10−4)
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Fig. 5. Phase-plane of the real and imaginary parts of Fourier transform of the tem-
perature for ε = 10, A = 0, B = 50, ν = 0.002 and G(v) = (|v|+ 10−4).

This plot illustrates the underlying complex dynamics of the attractor of a two
dimensional projection.

In summary, larger values of the viscoelastic parameters ε, results in sus-
tained chaotic behaviors overlapped with an (almost) periodic behavior whose
period scales with the numerical value of ε. The dynamics becomes more
complex and is characterized in all cases by periods of chaos and of violent os-
cillations, giving an idea of the complexity of the solutions of the system under
these variables due to memory effects.

4 Conclusion

The physical and mathematical implications of the resulting system of ODEs
which describe the dynamics at the inertial manifold is analyzed numerically.
The role of the parameter ε which contains the viscoelastic information of the
fluid was treated with special attention. We studied the asymptotic behavior
of the system for different values of ε the coefficient of viscoelasticity. We can
conclude that for larger values of ε the system behaves more chaotic. Physically,
this induction of chaotic behaviors is related to the memory effects inherent to
viscoelastic fluids. Thus, in the same way as delayed equations are known
to produce chaos, even in the simplest situations, viscoelasticity produces the
same kind of transition.
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