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Abstract. Discrete dynamics is a significant instrument for chaos investigation, since
the results of the theory are rigorously approved. We provide extension of chaos by
implementing chaotic perturbations to exponentially stable difference equations with
arbitrarily high dimensions. Our analysis is based on the Li-Yorke definition of chaos.
The results are supported with the aid of simulations. Extension of intermittency is
also investigated in discussion form.
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1 Introduction

Discrete equations are popular systems to provide a wide range of chaos and
important to approve the existence rigorously [1]-[6]. The first mathematical
definition of chaos for one dimensional maps is introduced by Li and Yorke [1].
The concept of snap-back repellers for high dimensional discrete equations was
introduced by Marotto [2]. According to the results of the paper [2], if a multi-
dimensional continuously differentiable map has a snap-back repeller, then it is
Li-Yorke chaotic. Li-Yorke sensitivity, which links the Li-Yorke chaos with the
notion of sensitivity, is studied in [5], and generalizations of Li-Yorke chaos to
mappings in Banach spaces and complete metric spaces are provided in [4]. The
Smale Horseshoe map, is first studied by Smale [7] and it is an example of a dif-
feomorphism which is structurally stable and possesses a chaotic invariant set
[6,8–10]. The horseshoe map is prominent due to its usage for the recognition
of chaotic dynamics, and can arise both in discrete and continuous cases, for
example in the Hénon map [11,12] and in the Duffing equation [13,14], when-
ever one has transverse homoclinic orbits. If one considers the famous Lorenz
[15] or Van der Pol equations [16,17], we do not have mathematically strictly
proven chaos of a certain type despite there have been considered significant
simplifications [18]. We propose in the present paper a rigorously confirmed

Received: 27 November 2013 / Accepted: 10 February 2014
c© 2014 CMSIM ISSN 2241-0503



130 Akhmet and Fen

method for chaos extension from known chaotic discrete equations to arbitrarily
high dimensional ones.

To explain the procedure of chaos extension that is mentioned in the present
study, let us consider the discrete equation un+1 = L[un] + hn, where L is a
linear operator with spectra inside the unit circle in the complex plane. If the
sequence {hn} is considered as an input with a certain property such as bound-
edness, periodicity or almost periodicity, then the discrete equation produces a
solution, output, with a similar feature, boundedness/periodicity/almost peri-
odicity [19,20]. Taking support from this fact, it is reasonable to consider the
problem that whether chaotic inputs generate chaotic outputs. In the solution
of this problem, one encounters with a difficulty such that chaotic sequences
are not defined clearly as in the case of former properties. In other words, the
chaoticity property can not be characterized through a single function. Instead,
whichever chaos type is considered, chaotic properties include interrelation of
functions. Exclusively, in the description of chaos through period-doubling
cascade, this is expressed implicitly. This is true for discrete as well as for
continuous-time chaos. Under the circumstances, we are forced to handle the
problem by means of a special unfamiliar way of “collection of sequences”.
However, formally, one can formulate the results of the paper in the old fashion
as the generation of a chaotic output from a chaotic input. It will be seen
better if we agree to call the chaotic sequence that one which belongs to the
chaotic set.

Throughout the paper, R and Z will denote the sets of real numbers and
integers, respectively.

The problem that is investigated in the present study is as follows. We
consider the discrete equations

xn+1 = F (xn), (1)

and

yn+1 = Ayn + f(yn) + g(xn), (2)

where n ∈ Z, A is a nonsingular, constant q × q real valued matrix, and the
functions F : Rp → Rp, f : Rq → Rq and g : Rp → Rq are continuous in all
their arguments. We suppose that the map F admits the chaos and possesses
an invariant set Λ ⊂ Rp. Our main goal is to show that equation (2) exhibits
chaotic motions.

A concept which is related to our theory of chaos extension is the gen-
eralized synchronization [21]-[24]. According to the results of [23], generalized
synchronization occurs in system (1)+(2) if and only if there exist sets Bx ⊂ Rp,
By ⊂ Rq such that the criterion

(A) lim
n→∞

‖yn − yn‖ = 0,

holds, for all (x0, y0), (x0, y0) ∈ Bx × By, where {yn} and {yn} are solutions
of equation (2) with the same solution {xn} of (1). Taking advantage of the
criterion (A), in the next section, we will show that generalized synchronization
occurs in the dynamics of equation (1)+(2).
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In this paper, besides the presence of generalized synchronization, we show
that if equation (1) is chaotic in the sense of Li-Yorke then the same is true
for (2). In other words, equation (2) preserves the chaos type of equation (1).
This is the main difference between the papers [23,24] and the present one.
Moreover, we will show by examples, the convenience of our method to equa-
tions which possess intermittency and Neimark-Sacker bifurcation resulting in
a stable closed curve.

2 Preliminaries

Let us describe the ingredients of Li-Yorke chaos [1]-[4]. Consider a set of
uniformly bounded sequences

B =

{
{ηn} : sup

n∈Z
‖ηn‖ ≤MB

}
,

where MB is a positive real number.

We say that a pair of sequences
({
η1n
}
,
{
η2n
})
∈ B×B is proximal if for an

arbitrary small number ε > 0 and an arbitrary large natural number E, there
exist an integer m0 and a natural number E0 ≥ E such that

∥∥η1n − η2n∥∥ < ε for
m0 ≤ n ≤ m0 + E0.

It is mentioned in [3,5] that a pair of sequences
({
η1n
}
,
{
η2n
})

is proximal if

lim infn→∞
∥∥η1n − η2n∥∥ = 0. It is worth saying that our definition for proximality,

which is adapted to the collection B and needed for our extension purposes, is,
in general, stronger than the one mentioned in the classical sense. Nevertheless,
one can achieve the equivalence of both definitions for equations of the form
(1), for example, by requesting a Lipschitz condition on the function F.

Another feature of Li-Yorke chaos is the following one. A pair of sequences({
η1n
}
,
{
η2n
})
∈ B ×B is called not asymptotic if lim supn→∞

∥∥η1n − η2n∥∥ > 0.

We call a pair of sequences
({
η1n
}
,
{
η2n
})
∈ B ×B as a Li-Yorke pair, if

they are proximal and not asymptotic. On the other hand, a subset C ⊂ B is
called a scrambled set if it does not contain any periodic sequences and for any
distinct sequences

{
η1n
}
,
{
η2n
}
∈ C , the pair

({
η1n
}
,
{
η2n
})

is a Li-Yorke pair.

The collection B is called a Li−Yorke chaotic set if: (i) B admits a periodic
sequence of period k, for any natural number k; (ii) B possesses an uncountable
scrambled set C ; (iii) For any sequence {ηn} ∈ C and any periodic sequence
{ξn} ∈ B, we have lim supn→∞ ‖ηn − ξn‖ > 0.

In the remaining parts, the uniform norm ‖Γ‖ = sup‖v‖=1 ‖Γv‖ for matrices
will be utilized.

The following assumptions will be needed:

(A1) There exist positive numbers L1 and L2 such that

L1 ‖x− x‖ ≤ ‖g(x)− g(x)‖ ≤ L2 ‖x− x‖ ,

for all x, x ∈ Rp;
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(A2) There exists a positive number L3 such that

‖f(y)− f(y)‖ ≤ L3 ‖y − y‖ ,

for all y, y ∈ Rq;
(A3) There exist positive real numbers Mf and Mg such that supy∈Rq ‖f(y)‖ ≤

Mf and supx∈Rp ‖g(x)‖ ≤Mg;
(A4) ‖A‖+ L3 < 1.

For a given solution x = {xn} of equation (1), using the standard technique
for maps [20], one can verify that there exists a unique bounded solution {φxn}
of equation (2). In the notation {φxn} , the symbol “x” is devoted to indicate
the dependence of the bounded solution on the chosen solution x = {xn} of
equation (1).Moreover, the unique bounded solution {φxn} , satisfies the relation

φxn =

n∑
j=−∞

An−j [f(φxj−1) + g(xj−1)], n ∈ Z. (3)

Let us denote by Ax the set of all uniformly bounded solutions of equation
(1) with initial data from the set Λ. Set Ay = {{φxn} : x = {xn} ∈ Ax} . Equa-
tion (3) implies that for any {yn} ∈ Ay the inequality supn∈Z ‖yn‖ ≤ H holds,

where H =
Mf +Mg

1− ‖A‖
.

We say that Ay is an attractor if for each solution {yn} of equation (2),
there exists a solution {ỹn} ∈ Ay such that ‖yn − ỹn‖ → 0 as n→∞. We will
verify the attractiveness of the set Ay in the next assertion.

Lemma 1. Ay is an attractor.

Proof. Consider an arbitrary solution {yn} of equation (2) with a fixed solution
{xn} of equation (1). The relations

yn = Any0 +

n∑
j=1

An−j [f(yj−1) + g(xj−1)],

φxn = Anφx0 +

n∑
j=1

An−j [f(φxj−1) + g(xj−1)],

imply for each n ≥ 1 the inequality

‖A‖−n ‖yn − φxn‖ ≤ ‖y0 − φx0‖+
L3

‖A‖

n−1∑
j=0

‖A‖−j
∥∥yj − φxj ∥∥ .

Applying Gronwall inequality, one can obtain that

‖yn − φxn‖ ≤ ‖y0 − φx0‖ (‖A‖+ L3)n.

According to condition (A4), we have ‖yn − φxn‖ → 0 as n→∞. �
One can verify using Lemma 1 that any two solutions {yn} , {yn} of equa-

tion (2) with the same {xn} satisfy the criterion (A). Therefore, generalized
synchronization occurs in equation (1)+(2).

Extension of chaos in the sense of Li-Yorke will be handled in the next
section.
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3 Extension of Li-Yorke chaos

In Lemma 2 and Lemma 3, we will consider the replication of the ingredients
of Li-Yorke chaos, and the main result will be presented in Theorem 1.

Lemma 2. If a pair of sequences ({xn} , {xn}) ∈ Ax × Ax is proximal, then
the pair

(
{φxn} ,

{
φxn
})
∈ Ay ×Ay is also proximal.

Proof. Fix an arbitrary small positive number ε and an arbitrary large natural

number E. Let γ = 1/
(

L2

1−‖A‖−L3
+

2(Mf+Mg)
1−‖A‖

)
.

According to our assumption that the pair ({xn} , {xn}) ∈ Ax × Ax is
proximal, there exist an integer m0 and a natural number E0 ≥ E such that
‖xn − xn‖ < γε for m0 ≤ n ≤ m0 + E0. Throughout the proof, let us denote
yn = φxn and yn = φxn, n ∈ Z.

Making use of the equations

yn =

n∑
j=−∞

An−j [f(yj−1) + g(xj−1)]

and

yn =

n∑
j=−∞

An−j [f(yj−1) + g(xj−1)
]
,

we obtain for n ≥ m0 + 1 that

yn − yn =

m0∑
j=−∞

An−j [f(yj−1) + g(xj−1)− f(yj−1)− g(xj−1)
]

+

n∑
j=m0+1

An−j [f(yj−1)− f(yj−1)
]

+

n∑
j=m0+1

An−j [g(xj−1)− g(xj−1)] .

Therefore, the inequality

‖yn − yn‖ ≤
m0∑

j=−∞
2(Mf +Mg) ‖A‖n−j +

n∑
j=m0+1

L2γε ‖A‖n−j

+

n∑
j=m0+1

L3 ‖A‖n−j
∥∥yj−1 − yj−1∥∥

=
2(Mf +Mg)

1− ‖A‖
‖A‖n−m0 +

L2γε

1− ‖A‖

(
1− ‖A‖n−m0

)
+

n−1∑
j=m0

L3 ‖A‖n+1−j ∥∥yj − yj∥∥
holds for m0 + 1 ≤ n ≤ m0 + E0 + 1. Multiplication of the both sides of the
last inequality by the term ‖A‖−n gives us

‖A‖−n ‖yn − yn‖ ≤
(

2(Mf +Mg)− L2γε

1− ‖A‖

)
‖A‖−m0 +

L2γε

1− ‖A‖
‖A‖−n
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+

n−1∑
j=m0

L3

‖A‖
‖A‖−j

∥∥yj − yj∥∥ .
By the help of the Gronwall inequality, one can attain that

‖A‖−n ‖yn − yn‖ ≤
(

2(Mf +Mg)− L2γε

1− ‖A‖

)
‖A‖−m0 +

L2γε

1− ‖A‖
‖A‖−n

+

n−1∑
j=m0

L3

‖A‖

[(2(Mf +Mg)− L2γε

1− ‖A‖

)
‖A‖−m0

+
L2γε

1− ‖A‖
‖A‖−j

](
1 +

L3

‖A‖

)n−1−j

=
L2γε

1− ‖A‖
‖A‖−n +

(
2(Mf +Mg)− L2γε

1− ‖A‖

)
‖A‖−m0

(
‖A‖

‖A‖+ L3

)m0−n

+
L2L3γε

(1− ‖A‖) (1− ‖A‖ − L3)
‖A‖−n

(
1− (‖A‖+ L3)

n−m0

)
.

Thus, we have

‖yn − yn‖ ≤
L2γε

1− ‖A‖
+

(
2(Mf +Mg)− L2γε

1− ‖A‖

)
(‖A‖+ L3)

n−m0

+
L2L3γε

(1− ‖A‖) (1− ‖A‖ − L3)

(
1− (‖A‖+ L3)

n−m0

)
=

2(Mf +Mg)

1− ‖A‖
(‖A‖+ L3)

n−m0 +
L2γε

1− ‖A‖ − L3

(
1− (‖A‖+ L3)

n−m0

)
≤ 2(Mf +Mg)

1− ‖A‖
(‖A‖+ L3)

n−m0 +
L2γε

1− ‖A‖ − L3
.

Suppose that the natural number E is sufficiently large such that⌊
E

2

⌋
>

ln(γε)

ln (‖A‖+ L3)
− 1,

where
⌊
E
2

⌋
denotes the greatest integer which is not larger than E/2.

Under the circumstances, if m0 +
⌊
E
2

⌋
+ 1 ≤ n ≤ m0 + E0 + 1, then

(‖A‖+ L3)
n−m0 < γε,

and hence the inequality

‖yn − yn‖ <
(

L2

1− ‖A‖ − L3
+

2(Mf +Mg)

1− ‖A‖

)
γε = ε

is obtained. As a consequence, the pair
(
{φxn} ,

{
φxn
})
∈ Ay ×Ay is proximal.

�

Lemma 3. If a pair of sequences ({xn} , {xn}) ∈ Ax ×Ax is not asymptotic,
then the same is true for the pair

(
{φxn} ,

{
φxn
})
∈ Ay ×Ay.
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Proof. By means of equation (2) one can show for a pair ({xn} , {xn}) ∈
Ax ×Ax that∥∥φxk+1 − φxk+1

∥∥ ≥ ‖xk − xk‖ − (‖A‖+ L3)
∥∥φxk − φxk∥∥ , k ∈ Z.

Therefore, we have

sup
k≥n

∥∥φxk+1 − φxk+1

∥∥ ≥ sup
k≥n
‖xn − xk‖ − (‖A‖+ L3) sup

k≥n

∥∥φxk − φxk∥∥
for any n ∈ Z. The last inequality implies that

sup
k≥n

∥∥φxk+1 − φxk+1

∥∥ ≥ 1

1 + ‖A‖+ L3
sup
k≥n
‖xk − xk‖ . (4)

Since ({xn} , {xn}) ∈ Ax × Ax is assumed to be not asymptotic, we have
that

lim sup
n→∞

‖xn − xn‖ = lim
n→∞

(
sup
k≥n
‖xk − xk‖

)
> 0.

Thus, making use of inequality (4), one can verify that

lim sup
n→∞

∥∥φxn+1 − φxn+1

∥∥ = lim
n→∞

(
sup
k≥n

∥∥φxk − φxk∥∥) > 0.

Consequently, the pair
(
{φxn} ,

{
φxn
})
∈ Ay ×Ay is not asymptotic. �

The main theorem of the present paper is the following one.

Theorem 1. If Ax is a Li-Yorke chaotic set, then the same is true for Ay.

Proof. Assume that the set Ax is Li-Yorke chaotic. One can show that for any
natural number k, the sequence x = {xn} ∈ Px is k−periodic if and only if
{φxn} is k−periodic. Therefore, the set Ay admits a k−periodic sequence for
any natural number k. Denote by Px the set of periodic solutions of (1), and
let

Py = {{φxn} : x = {xn} ∈Px} .

Suppose that the set Cx is an uncountable scrambled set inside Ax. Define
the set Cy = {{φxn} : x = {xn} ∈ Cx} . Condition (A1) implies that there is
a one-to-one correspondence between the elements of Cx and Cy. Therefore,
Cy is uncountable. Moreover, using the same condition one can show that no
periodic sequences exist inside Cy, since no such sequences take place inside
Cx.

Since the collection Ax is assumed to be chaotic in the sense of Li-Yorke,
each pair of sequences inside Cx × Cx is proximal. Lemma 2 implies that the
same feature is valid for each pair inside Cy×Cy. On the other hand, according
to Lemma 3, any couple ({yn} , {yn}) ∈ Cy × Cy satisfies the property that
lim supn→∞ ‖yn − yn‖ > 0. Hence, the set Cy is an uncountable scrambled set
inside Ay. Moreover, each pair inside Cy ×Py is also not asymptotic, since
the same is true for each pair inside Cx ×Px. Consequently, Ay is Li-Yorke
chaotic. �
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4 An example

In this part, as the source of chaotic perturbations, we will use the logistic map

xn+1 = µxn(1− xn), (5)

where µ is a parameter and x0 ∈ Λ = [0, 1]. If 0 < µ ≤ 4 then the set Λ is
invariant under the iterations of equation (5) [14]. For the parameter value
µ = 3.9, Li-Yorke chaos takes place in the dynamics of the logistic map [1].

Let us consider the map

yn+1 = −1

4
yn +

1

6
zn +

1

3
y3n,

zn+1 =
1

5
yn +

1

10
zn.

(6)

Equation (6) possesses a stable equilibrium point, and does not admit chaos.
We perturb equation (6) by the solutions of (5) with the parameter value

µ = 3.9, and set up the equation

yn+1 = −1

4
yn +

1

6
zn +

1

3
y3n + tan

(xn
4

)
,

zn+1 =
1

5
yn +

1

10
zn +

1

2
exn .

(7)

Equation (7) is in the form of (2), where A =

(
−1/4 1/6

1/5 1/10

)
. The conditions

(A1), (A2) are satisfied with L1 = 3
√

2/8, L2 = (e+ 1)/2 and L3 = 0.16. One
can verify that condition (A4) holds for equation (7).

In compliance with Theorem 1, the chaos of the logistic map (5) is extended
through equation (7). Moreover, the dynamics of equation (5)+(7) exhibits
generalized synchronization.

Let us consider a solution of equation (5)+(7) with x0 = 0.46, y0 = 0.35
and z0 = 1.23. Figure 1 depicts the y and z coordinates of the solution. Figure
1 supports our theoretical results such that the solution behaves chaotically.

5 Discussions

In this part of the paper, we will discuss through simulations the extension
of chaos around closed invariant curves of discrete maps and replication of
intermittency.

5.1 Chaos extension around closed invariant curves

Consider the delayed logistic map [14,25], which is represented by the equation

yn+1 = zn,
zn+1 = λzn(1− yn),

(8)
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Fig. 1. The extension of chaos in equation (7). (a) The graph of y-coordinate; (b)
The graph of z-coordinate. The parameter value µ = 3.9 is used in the map (5)
such that Li-Yorke chaos takes place. The presented pictures support the theoretical
results such that the chaos of the logistic map is extended.

where λ is a positive real parameter.

Equation (8) describes a population dynamics model, where zn is the density
of a population at time n, and λ is the growth rate. In this model, the growth
is determined not only by the current population but also by its density in the
past [25].

According to the results mentioned in [14,25], for the parameter value λ =
λ0 ≡ 2, the fixed point (1/2, 1/2) of equation (8) undergoes a supercritical
Neimark-Sacker bifurcation. In other words, for λ > 2 and λ − 2 sufficiently
small, the delayed logistic map has a unique attracting closed invariant curve
encircling the fixed point (1− 1/λ, 1− 1/λ).

We use the value λ = 2.01 from the book [14], and perturb equation (8) by
the solutions of the logistic map (5) with the parameter value µ = 3.9 to set
up the equation

yn+1 = zn + 0.0045xn,
zn+1 = 2.01zn(1− yn).

(9)

Let us consider the trajectory of equation (5)+(9) with x0 = 0.4209, y0 =
0.4316 and z0 = 0.4717. Figure 2 depicts the projection of this trajectory for
0 ≤ n ≤ 10000 on the y − z plane. One can see in the figure that the solution
behaves chaotically around the stable invariant curve of equation (8). This
picture reveals that our theoretical results can be used not only for systems
with stable equilibrium points but also with attracting closed curves.

5.2 Replication of intermittency

We will discuss the extension of intermittency [26] in this subsection through
simulations.
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Fig. 2. Chaotic behavior in the perturbed delayed logistic equation (9).

The logistic map (5) with the parameter value µ = 3.828 is known to exhibit
chaos through intermittency [27]. We perturb the equation

yn+1 =
1

2
yn + 0.002y3n, (10)

by solutions of the logistic map (5) with the parameter value µ = 3.828, and
constitute the equation

yn+1 =
1

2
yn + 0.002y3n + 3xn. (11)

One can verify that the conditions (A1)− (A4) are valid for equation (11).
To illustrate the replication of intermittency, in Figure 3, we visualize the

graphs of both coordinates of the solution of equation (5) + (11) with x0 =
0.1608, y0 = 4.3641. Figure 12 reveals the extension of intermittency such
that the pictures in (a) and (b) indicate the interruption of regular motions
by sporadic bursts of chaotic behavior, in the logistic map and equation (11),
respectively. It is also seen that equation (11) mimics the regular/irregular
behavior of the logistic map with a delay, which is a expectable behavior due
to the construction of the equation (1) + (2).

6 Conclusion

In the present paper, we provide a theoretical method for replication of chaos
in discrete-time dynamics in such a way that the ingredients of chaos from a
prior discrete equation are mimicked by a secondary one. We make use of the
ingredients of chaos in the sense of Li-Yorke and investigate numerically the
replication of intermittency. Chaos extension around closed invariant curves
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Fig. 3. Extension of intermittency in equation (11). The picture in (a) represents
the intermittent behavior in the logistic map, while the picture in (b) indicate its
replication in equation (11). It is observable in the figure that the y−coordinate
mimics the regular/irregular behavior of the x−coordinate with a delay.

is also discussed through an example. It is worth noting that the extension
procedure is valid without any constraints on the dimensions of the considered
equations. As a result, a chaotic attractor in a high dimensional phase space
takes place.

In the classical input/output problems, generally, one considers single func-
tions as the input and the output. However, in the solution of the chaos exten-
sion problem, we have taken into account the concept of collection of sequences,
since there is no definition for a solely chaotic sequence in discrete-time as well
as in continuous-time dynamics. From the input/output problem point of view,
our results emphasize that both the input and the output are chaos of the same
type for the discussed equation.
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