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Abstract: Many studies have been achieved in applied sciences on the earthquake 
prediction by researchers. The chaotic non-linear structural behaviour of earthquakes is 
well known. In order to understand the formation of seismic activity it is extremely 
important to record the continuous measurements of the soil radon gas (222Rn). In this 
study, 2976 data of 222Rn are used and the chaotic time series analysis is applied to 222Rn 
data from the soil. Chaos theory provides a structured explanation for irregular behavior 
of 222Rn and gas anomalies in systems that are not stochastic. Lyapunov exponents and 
correlation dimension method are used to show the existence of chaos time series. 
Chaotic behavior of 222Rn has been showed. Application of methodologies is achieved 
for Gölcük Region, İzmit, Turkey, where it is seismically very active.   
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1. Introduction 
222Rn exists from the layers of Earth and is created by the uranium deposits 
source in nature. Certain soils and rocks especially contain high levels of 
uranium, which is natural deposit of radon. The uranium is rich in structures like 
granite, phosphate, shale and pitchblende. Relations between 222Rn-earthquake 
and movement of 222Rn in the Earth layers and in the atmosphere have been 
searched serious [1, 2, 3, 4 and 5]. 222Rn has a half-life of 3.82 days and it is an 
α-emitting noble gas, which is produced in the radioactive decay series of 238U. 
222Rn tends to migrate from Earth layers to the surface of the Earth. The 
migration rate of 222Rn, which is non-linear, depends on many factors such as 
the dispersal of the uranium in the soil and bed rock, porosity of soil, humidity, 
micro cracks, granulation, and such [6].  
Okabe [1956] has indicated radon as an earthquake precursor and radon changes 
in atmospheric near surface and showed a favorable correlation with seismic 
activities. On the other hand, anomalously high radon concentrations of ground 
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water have been associated with fault lines [7]. Radon is easily soluble in water 
and it diffuses into the groundwater and spring waters.   
High concentration of radon is often found in soils overlying highly fractured 
rocks such as fault lines. Radon emanation increases during an earthquake [8, 
9]. Radon levels, which are correlated with meteorological and hydrological 
data, and they are used successfully in the earthquake forecasting researches 
[10, 11].  
In this study, 2976 data of the soil 222Rn gas are used and the chaotic time series 
analysis by considerations of Lyapunov exponents and correlation dimension 
methods. The chaotic behavior of the 222Rn concentration levels is determined. 
Finally, the results of the methodologies are achieved for Gölcük Region 
(Turkey). 
 

2. Methodology and Research Area 
The methodologies which are used in this study are based on the chaos theory. It 
is aperiodic long-term behavior in a deterministic system that exhibits sensitive 
dependence on initial condition and disorder behaves in an unexpected way 
[12]. Likewise, it depends on structure of the system as well as by certain 
parameters and is usually unstable, complex and non-linear systems are 
emerging [13]. 
Determination of the chaotic behavior in the natural events’ behaviors is very 
difficult; therefore, chaos theory is a suitable tool to show the characteristic of 
the dynamical system. 
The chaos methodologies are applied to data recorded at Gölcük Region located 
on the North Anatolian Fault Zone (NAFZ). 222Rn data are recorded between 
from 01/05/2006 to 31/05/2006 dates. It is continuously measured from the soil 
at 15 min intervals for a month. 
 
3. Results and Discussions 
3.1. Chaotic Time Series Analysis  
Chaotic time series are unpredictable systems. These systems contain large 
complexity. Prediction of non-linear time series is an available method to 
appraise characteristic of dynamical systems [14].  
Chaotic time series analysis methods are most enforceable in cases where the 
data include nonlinearity. The first of these analysis methods is obtained as the 
degree of non-linear positive Lyapunov exponents [15].  
If these methods display irregular or unpredictable behavior, then it is called 
chaotic. On the contrary, it is called non-chaotic. Fig. 1 shows the time series of 
chaotic behavior of 222Rn data taken from Gölcük Region on NAFZ. Non-linear 
time series analysis starts from measured experimental time series 
of )(,),(),( 21 txtxtx nΛ , at n points. The same analysis provides various tools to 

determine the temporal structures embedded in the time series.  
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Fig. 1. Time series state variable for chaotic behavior 

 
3.2. Lyapunov Exponent 
Lyapunov exponents can be defined as the exponential increase or decrease of 
minor perturbations on an attractor. Largest Lyapunov exponent is one of the 
most practical methods to define chaotic behavior in a system [16]. The basis of 
Lyapunov exponent is very close to each other to monitor both the starting 
point, which is based on very different trajectories. Its sign gives information 
about the system dynamics. When exponential value is positive, system 
indicates chaotic behaviours.  This condition, on initial conditions of the system, 
shows sensitive dependence [17]. The largest Lyapunov exponent can be 
anticipated in accordance with the algorithm Wolf et al. [18]. These applications 
are valid between neighboring points in the reconstructed phase space 
algorithm. In the following, the results have been shown concerning the 
maximum Lyapunov exponents (Lmax), where ,∞→t  ∞→)0(d and )(td , and 

hence, show the difference between two measurements. Largest Lyapunov 
exponent is calculated according to the following expression. The result is given 
for the 222Rn data in Fig. 2. 
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Fig. 2. Lyapunov exponent for 222Rn (m: embedding dimension; τ: delay time) 

  
3.3. Hurst Exponent 
Hurst exponent is used to predict from time series [19]. Hurst exponent 
coefficient is an additional statistical measure necessary for the classification of 
time series. Hurst exponent calculation is explained also through the Rescaled 
range, R/S analysis, where R is the range of the accumulated data and S is the 
standard deviation. This exponent, H, can change between 0 and 1. Its 
calculation is possible from the discrete time series data set { }tx  of dimension N 

by computing the mean, )(Nx  and standard deviation, )(NS  leading to, 
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respectively. Range of cumulative departures of the data is given 
by { } { }),(min),(max)( NnXNnXNR −=                                                             

Finally, the Hurst exponent can be calculated as follows, 

( )HnSR ≅                                                                                                       (4) 

If Hurst exponent is equal to 0.5, then it shows a random walk. A Hurst 
exponent between 0.5 and 1 proves the presence of chaos in the system. With 
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the data at hand, it is computed as 0.56 for 222Rn data from Eq. 4 and the results 
are given in Fig. 3. 
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Fig.3. Plot of <R/S> for 222Rn time series  

 
3.4. Correlation Dimension 
Correlation dimension is used to determine the degree of chaotic behaviour in a 
signal or time series. That is, correlation dimension, 

2D , aids to determine 

whether a signal behaves like a random or chaotic distribution. The algorithm, 
measure of 

2D has presented by Grassberger- Procaccia [20]. These dimensions 

need to compute the correlation integral. Correlation integral function )(rC can 

be defined as follows, 
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The distance between two units with (such as, ix  and jx ) Euclidean definition 

can be computed as,  

( ) 2

1
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H is the Heaviside step function, which can be expressed as follows. 
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If the system is chaotic, then 
2D  will be the largest value. Kaplan and Yorke 

study showed correlation of Lyapunov exponents of information dimension 
[21]. 

2D can also be calculated as follows. 

)log(

)(log
lim

0
2

r

rC
D

r→
=                                                                                              (9) 

In this study, one can draw )(log rC as a function of )log(r and compute 
2D  

from the slope of a linear fit. Embedding dimensions corresponding to the 
correlation dimensions for a period of chaotic deterministic process are shown 
in Figure 4. Also, for 222Rn correlation dimension,

2D , is given in Fig. 4. Time 

scale of dynamical system is similar to the 
2D  values’ mutual predictions. 

Values of the embedding dimension are given resource about the change 

of )(rC .  
 
 

2 4 6 8 10

log(r)

-20

-16

-12

-8

-4

0

 

Fig. 4. The estimate of correlation dimension for 222Rn time series  

 
4. Conclusions 
Natural and geophysical observations are not regular usually. Chaotic analyses 
are useful tools to describe the natural irregularity. In this study, they are used as 
chaotic methods. The non-linear behaviour of 222Rn in the Earth layers is 
showed. The chaos methodologies in order to show non-linear behaviour of 
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222Rn are applied to 222Rn data taken from the Gölcük Region on the North 
Anatolian Fault Line. The soil 222Rn gas, which propagates from the fault lines, 
has a nonlinear characteristic.  
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