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Abstract. In this paper, the problems on chaos control and synchronization of Li
chaotic systems with unknown parameters are considered. Firstly, the Li chaotic
systems are introduced. Secondly, the adaptive control system with only two state
feedbacks for synchronization of the Li chaotic systems is presented and the param-
eter identification method is also given. Sufficient conditions for the stability of the
synchronized errors are provided. Finally, numerical studies are performed to verify
the effectiveness of presented schemes.
Keywords: chaos, synchronization, unknown parameters, adaptive controller.

1 Instroduction

Since the synchronization of the coupled chaotic dynamical system with
different initial conditions was observed by Pecora and Carroll [1], the idea of
synchronization of chaotic systems has gained a lot of attention from various
disciplines due to its potential application in many fields such as chemical
reactions[2], biological systems[3], and secure communications[4], etc. In the
past two decades, a variety of types of synchronization approaches in dynamical
systems have been proposed such as adaptive control [5], observer based control
[6], variable structure control [7], back stepping control [8], impulsive control
[9], nonlinear control [10], and so on.

In practical engineering situations, it is often the case that the parame-
ters of chaotic systems are unknown. Therefore, there is an immense need
for algorithms that can effectively synchronize chaotic systems with unknown
parameters for theoretical research and practical application.

This paper presents the synchronization between Li systems with unknown
parameters accompanied by the presented control system contains only two
state feedbacks. Based on the Lyapunov stability theory, we prove that the
suggested approach can realize chaos synchronization globally and asymptot-
ically and recognize the unknown parameters as well. Numerical simulations
demonstrate the effectiveness of the proposed synchronization methods.

The rest of this paper is organized as follows. The problem formulation
and systems description are performed in section 2 and section 3, respectively.
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Section 4 presents the adaptive control method for the Li systems with unknown
parameters. Numerical simulations are performed in section 5 to verify the
effectiveness of the presented schemes, and concluding remarks are made in the
final section.

2 Synchronization

Consider a class of chaotic system which can be described as

ẋ = f(x) (1)

where x = x1, x2, ..., xn are the state vectors. Take system (1) as the drive
system, and the response system is defined as

ẏ = g(y) + u(t, x, y) (2)

where y = y1, y2, ..., yn represent the the state vectors, and f, g : Rn → Rn

are two continuous nonlinear vector functions, u(t, x, y) is an n−dimensional
control signals.

Let e(t) = y(t) − x(t) is the synchronization error. The control goal is to
design the controller u(t, x, y) for the response system (2), such that the error
system e(t) can be asymptotically stable at the zero equilibrium. In this sense,
that is lim

t→∞
e(t) = 0, which implies that the error dynamic system e(t) between

the drive system and the response system is globally asymptotically stable.

3 Systems description

Recently, Li constructed a three-dimensional chaotic system [11], which is
described by 

ẋ1 = a(x2 − x1)

ẋ2 = x1x3 − x2

ẋ3 = b− x1x2 − cx3

(3)

where x1, x2, x3 are state variables, and a, b, c are system parameters. When
the system parameters are a = 5, b = 16, c = 1, the system (3) demonstrates a
chaotic attractor. The three-dimensional view of the chaotic strange attractor
and some dynamical behavior in different planes for system (3) are shown in
Fig. 1.

4 Synchronization of Li system with unknown
parameters

Suppose the master system is defined in (3) which drives the slave system
given in the following form
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Fig. 1. Typical dynamical behaviors of five-dimensional hyperchaotic Lorenz system.


ẏ1 = ã(y2 − y1) + u1

ẏ2 = y1y3 − y2 + u2

ẏ3 = b̃− y1y2 − c̃y3 + u3

(4)

where yi(i = 1, 2, 3) are state variables, ui(i = 1, 2, 3) are external control

inputs, and ã, b̃, c̃ are unknown parameters to be identified.

The error vector can be defined as
e1 = y1 − x1 + u1

e2 = y2 − x2 + u2

e3 = y3 − x3 + u3

(5)

So the detail error dynamics is as follows
ė1(t) = ã(e2 − e1) + ax2 − ax1 + u1

ė2(t) = −e2 + e1e3 + x1e3 + x3e1 + u2

ė3(t) = b− e1e2 − x1e2 − x2e1 − c̃e3 − cx3 + u3

(6)

where a = ã− a, b = b̃− b and c = c̃− c.

Theorem. The drive system (3) and the response system (4) can be asymp-
totically synchronized for any different initial condition with following adaptive
controller 

u1 = −ã(e2 − e1)− e1

u2 = 0

u3 = e1e2 + x1e2 + x2e1 + (c̃− 1)e3

(7)
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and the following parameter laws of ã,̃b and c̃
˙̃a = −x2e1 + x1e1
˙̃
b = −e3
˙̃c = x3e3

(8)

Proof. Firstly, choose Lyapunov function as follows

V1 =
1

2
(e21 + (ã− a)2) (9)

Its time derivative along the trajectories of (6) is

V̇1 = (e1ė1 + a ˙̃a)

= −e21 + e1(a(e2 − e1) + a(e2 − e1) + e1 + ax2 − ax1 + u1) + a ˙̃a
(10)

Substituting (7) and (8) into (10), we have

V̇1 = −e21 ≤ −2V1(t) (11)

which leads to V1(t) ≤ V1(0) exp(−t), thus we have lim
t→∞

e1(t) = 0.

On the other hand, we take another Lyapunov function as

V2 =
1

2
(e23 + (̃b− b)2 + (c̃− c)2) (12)

Its time derivative along the trajectories of (6) is

V̇2 = (e3ė3 + b
˙̃
b + c ˙̃c)

= −e23 + e3(b− e1e2 − x1e2 − x2e1 − ce3 − cx3 + (1− c)e3 + u3) + b
˙̃
b + c ˙̃c

(13)

Substituting (7) and (8) into (13), we haven

V̇2 = −e23 ≤ −2V2(t) (14)

which leads to V2(t) ≤ V2(0) exp(−t), thus we have lim
t→∞

e3(t) = 0.

Now, by solving the second equation of (6) we get the following result

e2 = exp(−t)(e2(0)) +

∫ t

0

exp(t)(e1e3 + x1e3 + x3e1)dt (15)

Because lim
t→∞

(e1e3 + x1e3 + x3e1) = 0, thus by basic calculation one can

yield lim
t→∞

e2(t) = 0. Therefore, the error ei(t) = 0(i = 1, 2, 3) will converge to
zero.

Consider the first and the third equation of (6) we get the following result
lim
t→∞

a(x2 − x1) = 0

lim
t→∞

b = 0

lim
t→∞

cx3 = 0

(16)
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then we can have 
lim
t→∞

ã = a

lim
t→∞

b̃ = b

lim
t→∞

c̃ = c

(17)

This completes the proof.

5 Simulation examples

In this section, some numerical simulations about the synchronization be-
tween the drive system (3) and the response system (4) are given to verify the
effectiveness of the proposed method. In the numerical simulations, the fourth-
order Runge-Kutta method is used to solve the system. The system parameters
are selected as a = 5, b = 16, c = 1 and a1 = 4, b1 = −3, c1 = 9, such that the
drive system and the response system are chaotic with no control applied. We
employed the initial conditions be x(0) = (2,−4, 6) for the drive system and
y(0) = (−1, 1, 2) for the response system, respectively.
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Fig. 2. State trajectories of synchronization between the drive system and the re-
sponse system.

Numerical results are displayed in Figures 2-4. Fig.2 shows shows the time
evolution curves of the drive system and the response system with controllers
(7) and parameter laws (8). Fig.3 shows the time evolution of the synchroniza-
tion errors, which displays that the errors tend to zero as t→∞. In addition,
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Fig. 3. Time response of the synchronization errors.
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Fig. 4. Graph of the estimate parameters results.
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the estimations of the parameters are shown in Fig.4. These results show that
synchronization between Li chaotic systems with unknown parameters has been
achieved with our designed adaptive controller and parameter laws.

6 Conclusions

In this paper, we have studied the robust adaptive synchronization between
two Li chaotic systems with unknown parameters based on adaptive control and
stability theory. The effectiveness of the proposed approach has been verified
by the numerical simulations. The proposed adaptive control method can not
only achieve synchronization but also identify the system parameters at the
same time. The presented control method can also be applied in many other
chaotic systems.
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