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Abstract: In the last decade there has been considerable interest in a novel dynamical 
phenomenon of chimera states observed in an array of non-locally coupled oscillators 

where regions of coherence and incoherence coexist across the network. In this study we 

show how chimera states emerge in coupled logistic maps for certain specified initial 

conditions when the range and strength of coupling is varied. Here we show that these 
states are very robust and persist even in the presence of noise in the network parameters. 

On applying localized external perturbation to the incoherent regions, it is possible to 

obtain a completely coherent/incoherent dynamics in the whole network depending on 

the strength and sign of perturbation. This has important applications in the control of 
undesirable local dynamics, such as seizures in neural systems, or fibrillations in cardiac 

tissues. 
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Introduction 
The coexistence of coherent and incoherent dynamics in an array of non-locally 

coupled, identical Ginzburg Landau oscillators was first observed by Kuramoto 

and Battogtokh [1]. Such a state was named “chimera” meaning, something 

composed of incongruous parts. Chimera states are defined as spatiotemporal 

patterns of synchrony and disorder in homogeneous, non-locally coupled 

excitable systems. Recently, this phenomenon has been experimentally 

demonstrated in a system of mechanical oscillators by Aaron et al [2]. What 

makes the chimera behavior interesting is the coexistence of distinct spatial 

regions of synchronized behavior and irregular incoherent behavior, in networks 

of identical and symmetrically coupled units. Such a phenomenon is also 

observed in nature in neuronal systems of birds and dolphins which sleep with 

half of their brain (synchronous state) while the other half remains awake 

(asynchronous state) [3].  

 
Network topologies such as global (i.e. all-to-all) coupling and local (i.e. 

nearest-neighbor) coupling have been extensively studied. However, networks 
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with nonlocal coupling has been less studied in spite of applications in wide 

areas, viz., chemical oscillators [4], excitable systems e.g., neural tissue [5], 

Josephson junctions [6], etc. There is now renewed interest in nonlocal networks 

with the recent discovery of chimera states [7]. In various numerical studies it 

has been shown that non-local coupling is a necessary condition for the 

occurrence of chimera states [8]; with local or global coupling, identical 

oscillators either synchronize or oscillate incoherently, but never do both 

simultaneously. In addition, the emergence of chimera states is extremely 

sensitive to the initial conditions and is observed only for carefully chosen 

initial conditions [9]. Numerous studies suggest that chimera states can exist in 

complex systems with nonlocal interactions. In this study we analyze the 

chimera states in nonlocally coupled logistic maps. Since it is unlikely that in 

any physical system, all the units are identical, the effect of heterogeneity on 

their collective behavior is of interest. With this objective we analyze the 

emergence and stability of chimera states in the presence of noise. In particular, 

we introduce noise in the initial conditions and in the system parameters, viz., 

the bifurcation parameter and the coupling strength. In the event of undesirable 

dynamical behavior in localized regions, viz., cardiac arrhythmia, epileptogenic 

neural activity, desynchronization in coupled chemical reactors, etc, there is a 

need to curb the incoherent dynamics in certain regions. With this objective we 

analyze the effect of external perturbation or pinning given selectively to 

regions of incoherence on the spatiotemporal dynamics of the whole system. 

 

 

2  The Model and Simulations 
 

Model: 
In this study we analyze the occurrence of chimera states in non-locally coupled 

logistic maps on one-dimensional lattice (with periodic boundary conditions). 

We consider identical logistic maps at every node of the lattice which are 

coupled to P neighbors on either side on the spatial lattice. The spatio-temporal 

dynamical system considered here is given by the equation  

 

 

        (1) 

 
where i = 1, 2, … , N, t denotes the time step, ε the coupling strength and each 

node is coupled to P number of nodes on either side, i.e., a total of 2P 

connections. The local function considered here is a logistic map given by f(x) = 

ax(1 - x), a being the bifurcation parameter. The radius of coupling rc = P/N is a 

constant for all the nodes in the lattice. Since P = 1 corresponds to local 

(nearest-neighbor) coupling and P = N/2 corresponds to global coupling (all 

nodes connected to all other nodes), rc lies between 1/N and 1/2. To 

mathematically quantify how spatially coherent or incoherent certain region in 
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the lattice is, the parameter Ri which gives the degree of coherence in a local 

region surrounding the node i is defined as 
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where i = 1, 2, …, N, ψj=sin
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 (2xj – maxjxj - minjxj), δ denotes the neighborhood 

of a node on either side for which the extent of coherence is measured, maxjxj 

and minjxj denote the maximum and minimum values of xk respectively, where k 

is a node in the neighborhood of node j. Ri measures the degree of coherence in 

an interval defined by δ, in that as N → ∞ and δ → 0, Ri → 1 in the coherent 

interval and 0 < Ri < 1 in the incoherent interval. In Figure 1(a) is shown the 

spatial dynamics of x at a given time t, after eliminating the transients. In Figure 

1(b) is shown the spatial behavior of R for δ = 10. It may be noted that the value 

of R in the coherent region is close to 1 in Figure 1(b) (δ = 10). In the incoherent 

regions, the value of R is lower than in the coherent regions. Thus, analyzing the 

behavior of Ri helps in detecting the presence of chimera states in the lattice. 

 

 
 

Fig. 1: a) Spatial dynamics of x, b) spatial dynamics of R for δ = 10. The system size N = 

400, and the system parameters are a = 3.8, rc = 0.32,  = 0.24. Regions shaded in blue 
are the regions of incoherence. δ = 10 is used for all the succeeding R calculations. 

 

Initial Conditions: 
In numerous studies it has been shown that the emergence of chimera states is 

extremely dependent on the initial conditions. Here we consider three different 

initial distributions of x to induce chimera states in the 1d spatially coupled 

lattice. 

TYPE I: In this case, the distribution of x in the initial state is set to be the same 

in certain regions of the lattice, and randomly distributed between an interval in 

small intervals between them as defined below and depicted in Figure 2(a) [1]: 

  i  [0, N/8) and [7N/8, N), xi(0) = 0.45 

   i  [N/4, 3N/4), xi(0) = 0.9 

i  [N/8, N/4) and [3N/4, 7N/8), xi(0)  I, I = [0.4, 0.5] U [0.85, 0.95] 
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After eliminating the transients we observe the emergence of chimera states in 

the lattice: the coherent regions are interspersed between  the incoherent regions 

interspersed in between them as seen in Figure 2(d). The spatial behavior of R in 

Figure 2(g) further confirms the chimera state. 

TYPE II: A half compressed tanh function in the first half of the lattice and its 

mirror image in the second half as shown in Figure 2(b) is considered and is 

given by  

  i[0, N/2), 
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The chimera behavior is observed in this case also as shown in Figure 2(e) and 

2(h), very similar to that observed with type I initial conditions, except that the 

incoherent intervals are not so well defined.  

TYPE III: In this case the initial distribution of x is considered to be a sine 

function over the lattice given by 

 

   i  [0, N), init xi = sin(i/N) 

 

as shown in Figure 2(c). The spatial behavior of x in Figure 2(f) and Ri is Figure 

2(i) exhibits emergence of chimera states. Unlike type I and type II conditions, 

in this case there is neither a sharp discontinuity in the x value along the lattice, 

nor a flat region with nodes having the same x value. As can be seen in figures 

2(f) and 2(i), the spatial dynamics of x and R is shifted when compared to the 

dynamics with type I and type II initial conditions (shown in figures 2(d), (e), 

(g), (h)). In the case of type II or type III initial conditions, the chimera states 

are observed only when the local dynamics is chaotic, while the type I initial 

conditions give rise to chimera states even when the local dynamics is periodic; 

in this case the regions of incoherence are spatially and temporally periodic 

while the coherent regions are spatially synchronous. Thus we observe that 

different types of initial conditions can give rise to chimera states, as long as the 

coupling is non-local. 
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Fig. 2: The three types of initial conditions considered here, viz., type I, II and 

III, are shown in (a) – (c) and in (d) – (f) the spatial dynamics of non-locally 

coupled logistic maps obtained after eliminating 50000 transients for the 

corresponding initial conditions is depicted. Figures (g) – (i) depicts the spatial 

dynamics of R corresponding the to the dynamics of x in (d) – (f) respectively. 

The parameters (rc, ε) for the plots (d), (g) are (0.32, 0.24), (e), (h) are (0.24, 

0.24) and (f), (i) are (0.24, 0.24). 

 
 

Sensitivity to initial conditions: 
In order to see the dependence on the initial conditions for the emergence of 

chimera states, in Figure 3 we show the spatio-temporal dynamics of the system 

after eliminating 50000 transients for the parameters chosen in the chaotic 

regime. In Figure 3(a) is shown the dynamical state attained on using type I 

initial conditions (defined above) and in Figure 3(b) dynamical state attained on 

using random initial, i.e. xi(0) is a random number in the range (0,1). It may be 

noted that in Figure 3(a) with type I initial conditions, the system exhibits 

regions of incoherence interspersed between regions of coherence, while no 

such dynamical behavior is observed with random initial conditions (Figure 

3(b)), for same set of parameter values. The spatio-temporal dynamics of the 

lattice was analyzed for 50 different random initial configurations and chimera 

behaviour was not observed in any of these cases. Thus we may conclude that 

though the emergence of chimera behaviour is sensitive to initial conditions. 
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Fig. 3: Spatio-temporal dynamics of the non-locally coupled logistic maps with 

(a) type I initial conditions, (b) random initial conditions in the interval (0, 1) for 

a = 3.8, rc = 0.32 and  = 0.24. 

 

 

3  Results and Discussions: 

Analysis of rc -  parameter space: 
The emergence of chimera states is observed to be dependent on two 

parameters, viz., the range of coupling, rc and the strength of coupling, . In 

Figure 4 is shown the rc -  parameter-space plot indicating various dynamics 

observed in one-dimensional non-locally coupled logistic maps for type I initial 

conditions. The chimera behavior is observed for a wide range of coupling 

shown by regions in blue when the coupling strength  is low and K denotes the 

wave number of the spatial dynamics. It is observed that for a given coupling 

strength, chimera states with higher wave numbers occur at lower radius of 

coupling than those with lower wave numbers. Also, with increase in the range 

of coupling rc, the chimera behavior is observed even for very lower coupling 

strengths, . The red and green regions correspond to temporally periodic 

dynamics with period p = 4 and 2 respectively. The yellow region corresponds 

to chimera dynamics with p = 4, while the purple region indicates chimera 

dynamics with p = 2. 
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Fig. 4: rc -  parameter-space plot shown for non-locally coupled logistic maps 

with N = 400 with type I initial conditions. The values of a is 3.8. The chimera 

states emerge in regions shown in blue, purple and yellow, while red and green 

regions correspond to temporal periodic dynamics with period-4 and period-2 

respectively. The yellow region indicates intersection of blue and green regions 

and purple region, the intersection of blue and red regions. K denotes the wave 

number of the spatial dynamics. 

 

In Figure 5 the spatiotemporal dynamical behavior of the system at points 

marked ‘a’, ‘b’, ‘c’, and ‘d’ in Figure 4 is depicted in the third column. It may 

be noted from the spatio-temporal dynamics of x corresponding to point 'a' and 

'b' that as the coupling strength  increases from 0.2 to 0.24, the degree of 

coherence increases (for fixed rc = 0.32). On further increasing the coupling 

strength ( > 0.3), the regions of incoherence disappear and the lattice is seen to 

exhibit coherent dynamics (results not shown). The spatio-temporal dynamics at 

larger coupling strength,  = 0.42 (rc = 0.24) corresponding to 'c' is mainly 

coherent. The spatio-temporal dynamics corresponding to point 'd' exhibits 

higher wave number (K = 2) and period (p = 4). 
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Fig. 5: (a) - (d) depicts the spatial dynamics (xi vs i) at points a, b, c and d 

respectively in the rc -  parameter-space plot (Figure 4). (e) – (h) spatial plots 

of Ri vs i corresponding to the plots (a) – (d). The parameter values (rc, ) for the 

points ‘a’, ‘b’, ‘c’, and ‘d’ in Figure 4 correspond to (0.32,0.2), (0.32, 0.24), 

(0.28,0.42) and (0.15, 0.24) respectively. The points ‘a’, ‘b’, and ‘c’ corresponds 

to wave number K = 1, while point ‘d’ to wave number K = 2. The 

spatiotemporal dynamics is shown in the third column. For the calculation of R. 

 
Thus we observe that for fixed coupling strength , the incoherence in the 

spatial dynamics decreases with an increase in the radius of coupling. This is 

confirmed from the spatial behavior of degree of coherence, Ri, for different 

values of radius of coupling in Figure 6(a). Similarly, for weak coupling the 

dynamics is incoherent, but as the coupling strength is increased through a 

critical value (for fixed radius of coupling), coherence emerges and on further 

increase in the coupling strength, complete synchronization is observed. This is 

quantified in terms of Ri in Figure 6(b). 
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Fig. 6: (a) Spatial behavior of R is shown for various values of radius of 

coupling, rc: 0.2 (red), 0.32 (green) and 0.4 (blue) for a constant coupling 

strength, ε = 0.24. There is a clear decrease in the spatial incoherence with 

increase in the value of rc. (b) Spatial behavior of R is shown for various values 

of coupling strength, ε : 0.24 (red), 0.32 (green) and 0.36 (blue) for a constant , 

rc = 0.2. We see a clear decrease in the degree of spatial incoherence with 

increase in the value of ε. The remaining parameters for figures 6(a),(b) are a = 

3.8, N = 400. 

 

Robustness of chimera states to perturbations : 
In real practical situations, it is unlikely to have the same system parameters 

over the entire spatial domain, e.g., the junctional coupling strengths,  may 

vary between cells in a neural tissue, or the growth parameter a may not be 

same in all subpopulation patches, etc. To mimic such a scenario, we introduce 

small random variations in the system parameters a and , i.e., a ± δai and  +  

δi. Since the occurrence of chimera states is sensitive to the initial conditions, 

we also introduce noise in the initial conditions, i.e., xi(0) ± δxi(0) (xi(0) refers to 

type I initial conditions), and analyze the emergence and stability of the chimera 

states in such a heterogeneous coupled logistic maps. In Figure 7(a)-(d) is 

shown the spatial dynamics of x and in the adjacent plots (2
nd

 panel) the spatio-

temporal dynamics for varying coupling strengths. It is observed that at lower 

coupling strengths, the lattice exhibits incoherent dynamics in the presence of 

noise. As the coupling strength is increased, incoherence in the dynamics is 

reduced and emergence of chimera states is clearly observed for intermediate 

coupling strengths (0.24 < 0.35). For  > 0.35, the lattice exhibits spatially 

coherent dynamics. 
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Fig. 7: In (a) – (d) is shown the spatial dynamics of x and their corresponding 

spatio-temporal plots (in the 2
nd

 column) for different coupling strengths,  = 

0.2, 0.24, 0.3 and 0.35 respectively with a variation of ± 0.005. The parameters 

values of the lattice are a = 3.8 ± 0.04, and the random variations to the type I 

initial conditions as ± 0.05. 

 
Effect of External Perturbation on the Chimera States: 
In various physical and biological systems such as power grids or excitable 

tissues (e.g., cardiac or neuronal tissues), the synchronous movement of all their 

parts is extremely crucial for their proper functioning [10]. Localized regions of 

incoherence in such systems may cause hindrance to their performance and in 

extreme situations may even completely destabilize the system [11]. In such 

situations, there is clearly a need to address local disturbances/incoherent 
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dynamics and bring the system back to its original synchronous dynamical state. 

Here we attempt to analyze the effect of applying localized external perturbation 

or “pinning” to the incoherent regions and see if the system is driven to spatially 

synchronous state or the whole lattice exhibits incoherent dynamics. The 

objective is to manipulate the dynamics in the event of the system exhibiting 

undesired local dynamics. For example, extended periods of synchronization in 

the brain, results in epileptic seizures and there exists need for external 

intervention. In diffusively coupled logistic maps, it has been shown by Parekh 

et al [12] that negative pinning suppresses chaos while positive pinning 

induces/enhances chaos. In Figure 8(a), we observe that on applying negative 

pinning to the incoherent regions, the degree of incoherence is reduced and can 

be completely suppressed, while applying positive pinning as shown in Figure 

8(b), the degree of incoherence is enhanced. However, it may be noted that the 

coherent dynamics attained by selectively pinning the regions of incoherence 

exists only as long as the pinning is being given. In Figure 9 is shown the effect 

of removing the external pinning after having applied for a certain period of 

time. Initially the system is considered to be exhibiting chimera behavior when 

no pinning is applied to (blue). The region of incoherence is decreased both in 

the spatial spread and extent on applying negative pinning selectively to the 

nodes in the incoherent region (red). On switching off the external pinning and 

eliminating transients, we observe that the system goes back to the original 

dynamical state and exhibits spatial incoherence regions which are much 

narrower than the initial case, i.e., on switching off the external perturbation, the 

extent of spread of the incoherent dynamics is reduced, but not completely 

eliminated. 

     

 
 

 

Fig. 8: (a) Spatial behavior of R for the parameters N = 400, rc = 0.32, ε = 0.24, 

shown on selectively pinning the incoherent regions with varying strengths of 

(a) negative pinning: -0.05 (green) and -0.15 (red); (b) positive pinning: 0.03 

(green), 0.08 (red). The plots in blue correspond to “no pinning” in both (a) and 
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(b). It is clear that negative pinning suppresses while positive pinning enhances 

incoherence. 

 

         
Fig. 9: Spatial behavior of R: i) no pinning (blue), ii) selective pinning of - 0.13 

(green) after eliminating 50000 transients and iii) eliminating 50000 transients 

after removing the selective pinning (red). Here, a = 3.8, N = 100, rc = 0.32,  = 

0.18. 

 

 

Conclusions 

 
In this study we carried out a systematic analysis for the emergence and stability 

of chimera behavior in non-locally coupled logistic maps. We discuss the 

emergence and disappearance of chimera states as a function of the radius and 

strength of coupling. The chimera states are observed to be robust to small 

random variations in the initial conditions and system parameters for reasonable 

strength and radius of coupling. We also showed that is possible to 

suppress/induce incoherence in spatially localized regions as this maybe 

desirable in certain situations such as epileptic seizures, or cardiac fibrillation. 

However, the persistence of pinning is required for achieving the desired 

behavior. This has important applications in many complex physical and 

biological systems. 
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