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Abstract. In the present work we present a possibility to model morphology of surfaces 

of nanostructured semiconductor films containing quantum nanowires by use of our own 
theory based on the map for fractal evolution of measure and method for reconstruction 

of dynamical chaos. 
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1 Introduction  
 

At the present time nanocluster semiconductor films have been attracting 

considerable attention because they may have different applications in new 

electronic devices. Modern methods of microscopy (such as atomic-force, 

scanning tunneling, etc.) demonstrate the nanocluster structure of semiconductor 

thin films. As usual, such structures are irregular, self-affine, and self-similar. 

So, we can consider nanoclusters as fractal and multi-fractal objects. Self-

similarity means that similarity factors are equal each other for all variables. 

Self-affinity corresponds to different values of similarity factors for different 

variables.  

Nanostructures can be classified into different types (for example, we can 

consider nanostructures as quantum dots, quantum wires, and superlattices 

(quantum wells)). These types of nanostructures are widely used in modern 

electronics, for example, for creation of lasers, solar cells, detectors, quick-

operating devices and so on. 

Surfaces of semiconductor thin films containing quantum-sized structures 

with specified geometrical and topological characteristics have the unique 
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optical properties. Using of such semiconductor films in electronics can lead to 

increasing of efficiency of optoelectronic devices, particularly, for increasing of 

efficiency of solar cells. For example, nanostructured semiconductor films can 

be used as covering of surfaces of optoelectronic devices for reduction of 

scattering and reflection of light. 

 

 

2 Map for fractal evolution of measure 
 

For modeling of morphology of surfaces of semiconductor thin films containing 

quantum-sized structures of different types we must know distribution of 

electrons, holes and impurities depending on fractal dimension of their sets. For 

this aim in the present work we use the universal map for fractal evolution of 

measure [1, 2]. 

From the criterion of fractal measure it is possible to obtain the universal 

map describing its alternated evolution. The map describes chaotic oscillations 

with characteristics corresponding to criteria of self-organization.  

Let us to consider evolution on time of x(t) which is the module of a 

function related with fractal measure (we consider measure as an additive value 

characterized by a measurable set) as 
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where 0  is a statistical characteristic of the set of t.  Parameter 0  
is used for 

supporting the Lipshitz–Hölder condition due to limitation of 
dx

dt
.  Module of 

increment of function x
 

which is relative dimensionless scale of 

measurement of x(t)) can be replaced according to the condition of the fractal 

measure x(t) as 

 

( )

0 ( ) D dx x x    , 

1

0

x
x

x




 
    

 

, D d   ,                                   (2) 

 

where 0x  is non-fractal regular measure, D is fractal dimension of the set of 

)(tx , d is topological dimension of measure for a carrier.  By the substitution of 

Eq. (2) to Eq. (1) we can obtain the equation with finite differences.  
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Let us designate the discrete form of the sign function as .i  
0t  , 

therefore, signum function 
( )dx t

sign
dt

 
 
 

 depends only on value of 
ix . We can 

define its variation on discrete variable i as  

 

1

1 1

1 i i

i i

i x x

i i

x dx

x dx




 

 


 


.                                                                   (3) 

 

As usual, values 1 1i   
 
are used for linear description of evolution of 

perturbations. Obviously, it is possible to define 1i   via i . We don’t use any 

limitations for module of this value.  

We can rewrite  Eq. (1) at 0 1x 
 
with regard to Eqs. (2) and (3) as 
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Let us to eliminate 0  from the Eq. (4) due to choosing of identical 

moments of time.We use a discrete algorithm and we model the relation 

0

ix t


 via 0 because only this relation (not 0txi ) corresponds to transition 

to chaos.  

Meaning of using of 0 corresponds to realization of the following 

condition: 
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Here τ is characteristic time.                                                            

Mathematical operations reduced to calculation of the Riemannian 

measure if 0 0  . In this case 1t  .  

At 0 0 
 
we have a possibility to find the Lebesgue measure with regard 

to the dependence of 0t


  on increment of function ( , )i ix x
 
as  
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Meaning of parameter C  can be interpreted as an analog of base B  

(complexity) of a signal used for the description of spectra: 

 

kB    .                                                                    (7) 

 

Here 
k  

is typical correlation time and   is bandwidth. According to the 

definition, value of the parameter C  characterizes complexity of choosing 

accuracy for the description of signals with chaotic nature. It is well-known that 

measure of a fractal object depends on accuracy of observation. So, theoretical 

results contain the constant parameter C  characterizing accuracy of 

observation. Therefore, this parameter can be equal to 2 310 , 10  , and so on. If 

sign of the derivative in Eq. (1) defined by external conditions (for example, by 

noise-type excitations), so, we must use absolute values of x and 0t


  in Eq. 

(5).  

Let us take into account that t . So, we can rewrite Eq. (4) as 
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If we differentiate Eq.  (8)  we have the following expression: 
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Relations (8) and (9) are the map for the description of fractal evolution of 

measure. 

Distribution of electrons, holes and impurities in a nanostructured 

semiconductor can be described via the map for alternation of fractal measure 

by the following way: 
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(10) 

where k = (1, 2, 3) ≡ (n, p, a); (here (n, p, a) describe distributions of electrons, 

holes and impurities correspondently), Ρk is precision factor of resolution, γk is 

difference between fractal and topological dimensions, Xk,0 is equilibrium 
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concentrations of current carriers (electrons and holes) and impurities,   is sign 

function. 

We can use known values of γk  for self-similar case (coefficients of 

similarity are equal each other for all variables) and for self-affine set 

(coefficients of similarity are different for different variables). Normalized 

values of informational entropy of self-similar and self-affine sets 
2 0.806I   

and 
1 0.567I  correspondently [3, 4]. 

On the base of the map of alternation (10) describing evolution of a system 

according to the condition of fractality of measure we can model morphology of 

quantum dots ( 2  ), quantum wires ( 1  ) and quantum wells ( 0  ) 

located on surfaces of semiconductor thin films (topological dimension 2d  ). 

So, type of nanostructures in a nanocluster semiconductor is determined by 

fractal dimensions of sets of electrons, holes and impurities. Numerical values 

of fractal dimensions describe steady self-similar and self-affine sets. 

We apply the well-known method for reconstruction of dynamic chaos [5] 

for modeling of relief of semiconductor surfaces containing quantum nanowires. 

According to the method multi-dimensional images characterizing a chaotic 

phenomenon can be constructed via a one-dimensional realization by the 

following way.  

It is necessary to transform the initial sequence of data  1i in f n 
 
to an 

array of sets with sequentially increased shifts. The shifts are values divisible to 

 . Parameter  can be interpreted as a fixed delay. So, we can write a set of 

discrete variables as  
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                                  (11) 

 

Linear independence of the variables in phase space is necessary. This 

condition can be achieved by the corresponding choice of numerical value of   . 

All these variables can be defined via single data sequence  1 .i in f n    So, 

application of the described approach let us to describe dynamics of a system in 

multi-dimensional space via a single one-dimensional data sequence. Current 

values of electron concentration in a nanocluster semiconductor can be defined 

from the map for alternation of fractal measure (Eq. (10)). In our case the 

dependence of electron concentration on spatial step can be considered as 

required one-dimensional dependence. 
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3 Results of numerical analyses 
 

Results of computer simulation of morphology of semiconductor surfaces 

containing quantum-sized structures according to the described approach are 

presented below.  
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Figure 1. Model of a surface containing vertical quantum nanowires (a)  

and its phase plane ( 1,i in n  ) (b). 

0 0 0.25n p  , 0 1.7a   0.999n p aC C C   . 
12 ,n p a I     

 
10.   
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Varying the parameters Сk, γk , Xk,0  and  μ in Eq. (10), it is possible to 

model morphology of surfaces with different cluster structure.  

It is well-known that semiconductor surfaces can contain point, lined, 

spatial and volumetric structures. Type of nanostructures can be taken into 

account by assignment of γk. 

Influence of substrate can be taken into account by assignment of 

corresponding values of Xk,0, which are equilibrium concentrations of electron, 

holes and impurities.  

Resolution of the modeled image can be controlled by parameter Сk which 

is the is precision factor of resolution ranged from 0 to 1. 

We accept   equal to 10. Fractional values of initial concentrations 

correspond to valency of semiconductor substrate and impurity atoms.   

Model of morphology of semiconductor with quantum nanowires is shown 

in Figure 1(a).  Its phase plane characterizing distribution of current carriers is 

shown in Figure 1(b). We can see that phase plane contain steady phase 

trajectories tending to infinity. This fact confirms that the considered systems 

can by described by use of theory of dynamical chaos. In this case chaotic 

processes are close to stochastic behavior. 

Varying the values of fractal dimension we can obtain models of surfaces 

with quantum nanowires with different height and location.  

Influence of insignificant variation of concentration of impurities on 

morphology of semiconductor surfaces containing vertical nanowires is shown 

in Figure 2. We can see that even insignificant variation of concentration of 

impurities leads to remarkable changing of morphology of the considered 

semiconductor film.  

Models of surfaces with quantum nanowires presented in Figures 1 and 2 

are identical to experimental photos made by use modern methods of 

microscopy [6-10]. 
By use of the theory it’s possible to model so called horizontal quantum 

nanowires also. These structures can be considered as lateral ordered arrays of 
quantum dots. Models of semiconductor surfaces containing quantum dots are 
shown in Figure 3(a) and Figure 3(b). We can see that increasing of 
concentration of impurities leads to changing of height of nanoclusters and 
theirs relative disposition.  

Varying parameters in Eqs. (10) and (11), we can model surfaces with 
arranged arrays of quantum dots. These arrays can be considered and horizontal 
quantum wires.  

Phase plane for such structures contains steady phase trajectories. As 
indicated above, this fact corresponds to existence of dynamical chaos in the 
considered systems.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 

Figure 2. Influence of concentration of impurities on morphology of a surface 

of nanostructured semiconductor film. 

0 0 0.25n p  , 0.996n p aC C C   . 
22 ,n p a I     

 
10,   

0( ) 1.0,a a   0( ) 1.2,b a   0( ) 1.4,c a  0( ) 1.6.d a   
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(a) 

 
 
(b) 

 
 

Figure 3. Models of surfaces containing quantum dots.
  

0 0 0.25n p  , 0.999n p aC C C   . 
13 ,n p I    23 ,a I  

 
15,   

0( ) 0.95,a a   0( ) 1.3.b a   
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Figure 4. Model of a surface containing horizontal quantum nanowires (a) and 

its phase plane ( 1,i in n  ) (b). 

0 0 0.25n p  , 0 1.8,a   0.999n p aC C C   . 
12 ,n p a I     

 
10.   

 
 

Models of surfaces shown in Figures 3 and 4 are in a good agreement with 
corresponding experimental data [11-18]. 
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Conclusions 
 

By use of the suggested map for the description fractal evolution of measure we 

can model different types of nanostructures. For this aim we use quantitative 

criteria of self-similarity and self-affinity of sets established in our works. 

Variation of parameters in Eq. (10) let us model morphology of 

semiconductor thin films containing vertical nanowires with different height and 

relative location. Even insignificant variation of concentration of impurities 

leads to remarkable changing of morphology of surfaces containing quantum-

sized structures. 

Using of the suggested theory give us a possibility to model quantum dots 

and lateral arranged arrays of quantum dots which are horizontal quantum 

nanowires.  

Results of presentation of distribution of current carriers in phase plane 

confirmed that considered systems can be described by use of the theory of 

dynamical chaos.  

Our theoretical results qualitatively conform to the corresponding 

experimental data.  

Theoretical results described in the work can be used for the description of 

electrical and optical properties of nanostructured semiconductors.  
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