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Absolute Negative Mobility in a Ratchet Flow
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Abstract. This paper is motivated by the transport of suspended particles pumped
periodically through a modulated channel filled of water. The resulting flow behaves
as a ratchet potential, called ratchet flow, i.e. the particle may drift to a preferential
direction without bias. In order to find out the parameter range of the particle
transport and to understand it, we study the deterministic particle dynamics using
continuation of periodic orbits and of periodic transport solutions. We identify the
onset of transport as a widening crisis. We show that for slightly asymmetric problem,
the particle may drift in the opposite direction of the bias. By adding a small noise the
onset of transport may be trigger leading to an Absolute Negative Mobility (ANM).
Keywords: Ratchet, Absolute Negative Mobility, synchronization, Chaos, Noise,
Continuation.

1 Introduction

The transport of micro-particles through pores in a viscous fluid in absence
of mean force gradient finds its motivation in many biological applications as
the molecular motor or molecular pump. In the last decade, the literature
shows that a periodical pore lattice without the symmetry x → −x can lead
to the so-called ratchet effect allowing an transport in one direction x or −x.
A review can be found in Hänggi and Marchesoni[12]. We focus on the set-
up presented in Matthias and Müller[22] and Mathwig et al.[21] consisting in
a macroporous silicon wafer which is connected at both ends to basins. The
basins and the pore are filled with liquid with suspended particles (1− 10µm).
The experiment shows the existence of an effective transport in a certain range
of parameter values. By tuning them, the direction of the effective transport
may change and in particular the transport direction is opposite to the parti-
cle weight. These results may be interpreted as a ratchet effect by Kettner et
al.[14] and Hänggi et al.[13] where ”ratchet” refers to the noisy transport of
particle without bias (zero-bias). When the transport direction is opposite to
the bias, then it is called Absolute Negative Mobility (ANM), see e.g. Du and
Mei[9] or Spiechowicz et al.[27]. Recently, we show that inertia may induce
a directed transport Beltrame et al.[4]. In this deterministic approach where
thermal fluctuations are negligible and a small inertia is taken in to account,
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the transport results from non-linear phenomena. Because of the existence of
transport without bias, we called the fluid flow in the micro-pump: ratchet
flow. Since the results of the experiment of Mathwig et al.[21] question the
relevance of small fluctuations in the transport, in this paper, we propose to
better understand the role of noise in this non-linear dynamics. And especially
to focus to a possible Absolute Negative Mobility.
We consider a one-dimensional system where the Stokes force and a small ran-
dom force due to fluctuations are the only forces acting on the particle. It
results a ODE system which is similar to inertia ratchet as found in the litera-
ture: Barbi and Salerno[3], Mateos[18,19] and Speer et al.[26]. In these latter
papers, transport solutions synchronized with the periodic forcing are found
for the deterministic case. They show that this dynamics results from a syn-
chronization transition as it occurs for periodically forced oscillator Pitkovsky
et al.[24]. This regime can be destroyed via a crisis which appears after a
period-doubling cascade. The synchronized transport regime may exist in the
symmetric case (parity symmetry x → −x), see Speer et al.[26] or Cubero
et al.[6]. Obviously, it implies the existence of an opposite transport solution
and then there is no transport in statistical sense. Now, if a small bias is
applied, the domain of existence of opposite transport solutions do not match
anymore. As consequence by varying the tuning parameter the transport direc-
tion may change and in particular the transport opposed to the bias may exist
Wickenbrock et al.[30]. The deterministic dynamics may help to understand
ANM too. For instance, in Machura et al.[16], the nonlinear analysis showed
that stable periodic solution and unstable periodic transport solution coexist.
By adding a small noise, the trajectory may escape from the bounded periodic
solution and may follow during few periods the periodic transport solution. As
consequence, a drift opposed to the bias is triggered by the noise.
Despite a plethora of study in this topic, there is still open issues as the tran-
sition from unbounded dynamics to transport dynamics which seems no to be
clearly identified. Moreover, most of study assumed the inertia large or, in con-
trary, the limit case of overdamped dynamics (Kettner et al.[14] and Lee[15]).
Here we consider moderate drag coefficient of the particle. We aim at find-
ing transport transition and possible ANM. In order to tackle this problem we
propose to study the deterministic case with inertia particle and then apply
a small Gaussian noise. In addition to the time integration, the deterministic
case is analyzed with the help of continuation method (Beltrame et al.[5] and
Dijkstra et al.[7]). This method appears seldom in the literature dealing with
ratchet (see e.g. Pototsky et al.[25]). However, we can follow periodic orbit (or
relative periodic orbit for the transport solution) and determine their stability
and bifurcation point. Thus, it is powerful to determine onsets and the kind of
bifurcation.
In the present work, we consider the physical parameters: particle drag (inverse
of the inertia), the mean flow of the fluid, the velocity contrast, the asymmetry
of the flow and the bias (resulting from the particle weight). We analyze firstly
the bounded periodic solution (symmetric and asymmetric cases), Secondly,
the onset of transport is determined. Finally, we treat the case of the small
perturbation due to a Gaussian noise.
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2 Modeling

Fig. 1. Sketch of the problem: the particle translates along the x-axis of a periodic
distribution of pores. It is dragged by a periodic motion of a viscous fluid. The
particle weight is oriented to the negative x direction.

Let us consider a L-periodic varying channel along the line (Ox) (Figure 2)
through which a viscous fluid containing suspended particles is periodically
pumped. We assume that the period of the pumping period is small enough
to consider a creeping flow. Such an assumption is relevant for periodicity for
L ' 10µm and T ≥ 1ms (Kettner et al.[14]). The particle is centered on the
x-axis then the moment of the particle is neglected and the particle does not
rotate. This creeping flow exerts a Fd drag force on the particle along the x
axis. The set-up is vertical so that the particle weight, Fw, is oriented to the
x negative and the buoyancy force, Fb, to the positive direction. Thus the
particle position x(t) is governed by the equation

mẍ(t) = Fd + Fw + Fb (1)

To simplify, we assume that Fd is approximatively given by the Stokes drag:
Fd = −γ(v(x, t) − vf (x, t)), where γ is the drag coefficient and v and vf are
the particle velocity and the fluid velocity without particle, respectively. This
expression of the drag force requires that the particle is small comparing to the
channel radius. Because, it is quasi-static problem, the fluid velocity distribu-
tion without particle is proportional to the amplitude pumping so that we may
write: v(x, t) = u0(x) sin(2πt) for a sinusoidal pumping, where u0(x) depends
on the pore profile. We obtain the adimensional governing equation

ẍ(t) = γ(u0(x(t)) sin(2πt)− ẋ(t)) + g (2)

where the length is scaled by the pore length L, the time by the pumping
period T and the drag by m/T and g = (Fw + Fb)/(mL/T

2). This equation
admits an unique solution C2 for a given position and velocity (xi, vi, ti) at a
time ti. In particular, two different solutions cannot have at a given time the
same position and velocity. Another straightforward result shows that particle
acceleration ẍ and its velocity ẋ remain bounded.
The velocity profile u0(x) gets the periodicity of the geometry. If the pore
geometry is symmetric, we consider a sinusoidal velocity profile:

u0(x) = um(1 + a cos(2πx)) (3)

where um is the mean velocity and a the velocity contrast. Otherwise for
asymmetric geometry, we consider an additional parameter d related to the
asymmetry and then the pore profile is given by:
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d is the algebraic shift which ranges from − 1
2 to 1

2 , x̄ = x mod 1 and 1I is the
indicator function of the interval I (1I(x̄) = 1 if x̄ ∈ I, otherwise 1I(x̄) = 0).
Examples of the velocity profiles are shown in Figure 2. Note that, it is possible
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Fig. 2. Analytical velocity profiles of the flow u0(x) for um = 1, a = 0.65 and different
values of d.

to find out pore profiles corresponding to such analytical profiles, see Beltrame
et al.[4] and Makhoul et al.[17]. The asymmetry parameter d does not add a
bias: if g = 0, the bias remains zero even if d 6= 0.
As explained in the introduction, we employ continuation method in order to
track the periodic orbits of the Eq. (2) in the parameter space. We use the
software AUTO (Doedel et al.[8]). This latter requires an autonomous system.
In order to obtain an autonomous system and still periodic orbits, we added
an oscillator which converges asymptotically to the sinusoidal functions called
ϕ and φ:

ẋ = v (5a)

v̇ = γ (u0(x)φ− v) + g (5b)

φ̇ = 2πϕ+ φ(1− ϕ2 − φ2) (5c)

ϕ̇ = −2πφ+ ϕ(1− ϕ2 − φ2) (5d)

where the sinusoidal forcing is the asymptotical stable solution of Eqs. (5c)
and (5d), i.e. φ→ sin 2πt and ϕ→ cos(2πt) [2]. The system (5) has the same
periodic solution as Eq. (2). This four-dimensional problem can be written

ṡ = (ẋ, v̇, ϕ̇, φ̇) = F (x, v, ϕ, φ) = F (s) (6)
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The deterministic transport is only possible is u0 is not constant, then the veloc-
ity field u0(x) constitutes the ratchet flow. Considering a symmetric problem,
i.e. u0(−x) = u0(x) and g = 0, the function F is equivariant by the cen-
tral symmetry F (−s) = −F (s). As consequence, s is solution implies −s is
solution too. We called symmetric orbit, solution which are invariant by the
central symmetry. There is two symmetric solutions: one centered the pore
middle (x = 1/2), noted sm and at the second one, centered at the pore inlet
(x = 0), noted s0.
For the asymmetric case, it is no longer true. However, for small oscillation
amplitude um, the problem is similar to charged particles in a non-uniform
oscillating electromagnetic force McNeil and Thompson[23], it is possible to
prove that there exists periodic solution centered at the extrema of u0(x). At
the maximum it is unstable while it is stable at the minimum and it constitutes
the only attractor.
Therefore, the analytical results do not show existence of transport solution.
In the following we propose to track the periodic solutions in the parameter
space.

3 Transitions to transport solutions
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Fig. 3. (a) Bifurcation diagrams showing the periodic branches as a function of the
drag γ for a = 0.65, um = 9 in the symmetric case. The black color indicates the
s0 branch, red the sm branch, green the sa branch and blue the 2-periodic branch.
Dots indicate the different bifurcations: Pitchfork bifurcation (PB), Period-Doubling
(PD) and (PD2) for the second period-doubling, fold bifurcation (LP). (b) Bifurcation
diagram for the parameter but in the asymmetric case: d = 0.1 and g = −0.1. Black
indicate 1-periodic branch and blue 2-periodic branch. In both diagrams, plain lines
indicate stable orbits while dashed line correspond to unstable orbits.

We study the periodic branches for the symmetric case, i.e., the velocity
profile u0 is symmetric (d = 0) and there is no bias (g = 0). Besides the
solutions s0 and sm, we find an asymmetric branch (Figure 3(a)). This branch
is not invariant by the central symmetry and there is two branches s+a and
s−a copies by the central symmetry. Then, they have the same norm and they
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do not appear in the bifurcation diagram, we note them sa to simplify. The
sa branch results from a pitchfork bifurcation either from s0 and sm and thus
connect both branches (Figure 3a). This arises in the intervals [2.05, 6.52] and
[6, 18]. At each end of the intervals, the same scenario, described below, occurs
by varying γ away from the pitchfork bifurcation:

1. The sa branch is stable in the vicinity of the pitchfork bifurcation but it
is destabilized in the via a period doubling. We plotted the bifurcated 2-
periodic branch which displays two folds. It becomes unstable via period
doubling too. Note that the period-doubling cannot arise on a symmetric
branch according to Swift and Wiesenfeld[28].

2. A period doubling cascade follows the first period-doubling and leads to
a strange attractor. The present cascade has a behavior similar to one-
dimensional map whose the distance between two consecutive bifurcations
is divided by the universal Feigenbaum constant [10] δ ' 4.669.

3. The strange attractor is bounded till an widening crisis Grebogi et al.[11].
As consequence contiguous attractors (shifted by one spatial period) are
connected. Because of the spatial shift symmetry, the dynamics is no longer
bounded. Of course for the symmetric case no preferential direction of the
particle trajectory is observed. It is more like an anomalous diffusion Ma-
teos and Alatriste[20].
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Fig. 4. (a) Poincaré section (xn = x(n)mod1, vn = v(n)) where n ∈ N near the onset
of transport at (black dots) γ = 14.70 and (red dots) γ = 14.69, other parameters
are: um = 9, a = 0.65, d = 0.1, g = −0.1. The strange attractor in black remains in
the interval [0, 1] while the red strange attractor is no longer bounded. Its represen-
tation modulo 1 displays a sudden expansion characteristic of the widening crisis. (b)
Discrete dynamics xn = x(tn) at discrete times tn = n of the red strange attractor of
the panel (a) at γ = 14.69. An intermittent drift to positive x appears.

For the asymmetric case, similar transitions from 1-periodic orbit to the onset
of the transport are observed. Nevertheless, the pitchfork bifurcations of the
1-periodic orbits vanish and instead there is two 1-periodic branches formed,
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Fig. 5. (a) Discrete dynamics xn at entire times tn in the co-moving frame c = +1
near the onset of synchronization at (red) γ = 13.4170, (blue) γ = 13.4165 and (black)
γ = 13.4164 > γs

c . Other parameters are um = 9, a = 0.65, d = 0.1, g = −0.1. The
plateaux correspond to a near synchronized transport with c = +1. (b) Dynamics
x(t) for γ = 13.416 < γs

c : After a chaotic transition, the dynamics is the synchronized
transport with c = +1.

firstly, by the coalescence of the s0, s+a and sm and, secondly, by the coalescence
of s0, s−a and sm. An example for d = 0.1 and g = −0.1 (other parameters being
the same as for the symmetric case) is displayed in the bifurcation diagram 3b.
From each branch, a period-doubling occurs. Both 2-periodic branches present
two folds. A period-doubling cascade arises as for the symmetric case. We
focus on the period-doubling cascade which starts at the largest drag coefficient
γ ' 16.48. Indeed a drag coefficient smaller than 10 is quite unrealistic for
small particles. The period-doubling cascade leads to an asymmetric strange
attractor at γ ' 15.2. At γtc ' 14.698, we observe a widening crisis connecting
the contiguous attractors (Fig. 4a). But this time, because of the asymmetry of
the system, there is a non-zero mean drift particle (see Fig. 4b). As expected,
the dynamics after the crisis is intermittent: the dynamics spends a long time
near the ”ghost” bounded strange attractor and ”jumps” to the other ”ghost”
attractor shifted by one period length. Note that, it is quite unexpected that we
obtain a transport opposite to the bias. Now, we study the transport solutions.

4 Transport solutions

By decreasing further the drag coefficient, the drift velocity increases. In fact,
the mean duration of the bounded-like dynamics is shorter. For γ approaching
the critical value γsc ' 13.41639, the drift velocity is almost equal to one. The
epochs of bounded-like dynamics are very short comparing to the transport
events. The discrete particle position xn = x(tn) at entire times tn = n and in
the comoving frame with the speed +1 is displayed in the Fig. 5a. Thus, the
long plateaux correspond to the dynamics with drift velocity about one. When
γ tends to γsc the longer of the plateaux diverges and then the velocity tends
to one. For γ > γsc the dynamics is periodic in the comoving frame. In other



160 Beltrame

7 8 9 10 11 12 13
4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

γ

||
s
||

(a)

7 8 9 10 11 12 13 14
4.2

4.4

4.6

4.8

5

5.2

5.4

γ

||
s
||

(b)

Fig. 6. (a) Bifurcation diagram of the synchronized transport solution with c = ±1 for
the symmetric case. The solution emerges at saddle-node bifurcations. Dashed [plain]
line indicate unstable [stable] solution branch. The stable branch becomes unstable
via period-doubling (the blue branch corresponds to 2-periodic orbit), which is again
unstable by period-doubling. Other parameters are um = 9, a = 0.65. (b) Bifurcation
diagrams of the synchronized transport solution with (red) c = −1 and (black) c = +1
for the asymmetric case: d = 0.1, g = −0.1, the other parameters being the same as
in panel (a). A similar bifurcation diagram as for the symmetric case occurs for both
branches c = +1 and c = −1. However, their domains of existence are slightly shifted.

words, the particle advances of one spatial length after one period (Fig. 5b). It
is the so-called synchronized transport. In point of view of synchronization, it
is a synchronization of oscillators with forcing at moderate amplitude Vincent
et al.[29]. Then the transition is a saddle-node. Moreover, the chaotic transient
observed in Figure 5b suggests the presence of a chaotic repeller as it occurs in
this case, see e.g. Pitkovsky et al.[24].
We study the regular transport emerging from the synchronization. Since the
transport xt(t) is periodic in the comoving frame, we introduce the periodic
function xp such as

xt(t) = xp(t) + ct (7)

where c = ±1 depending on the direction of the transport. Then if xt is solution
of Eq. 2 then it is solution of the equation:

ẍp = γ [u0(xp + t)) sin(2πt)− ẋp − c] + g, (8)

It is a similar equation as Eq. (2) with an added bias −γc. We found a transport
with c = +1 and also the opposite transport c = −1 (Fig. 6b). The coexistence
of opposite transport solutions is a consequence of the existence of synchronized
transport in the symmetry case. Indeed, for the symmetric case, a similar
scenario leads to the synchronized transport (Fig. 6a). In this case, according
to the equivariance of the problem, if the solution c = +1 is found, then a
solution c = −1 exists, deduced from the central symmetry (Speer et al.[26]).
Because these solutions are no more symmetric, generically, these solutions
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Fig. 7. Discrete time evolutions xn at entire times tn for γ = 8.5, um = 9, a = 0.65
and (a) for the symmetric case and (b) the asymmetric case: d = 0.1, g = −0.1.
The dynamics display a competition between opposite transports. However in the
asymmetric case, a net drift to x negative appears.

remain for a small enough perturbation due to the asymmetry d or/and the
bias g.
All the bifurcation diagrams of synchronized transport with c = ±1 have the
same structure (Fig. 6). The solution emerges from a saddle-node leading to
the birth of a pair of saddle branches. The unstable branch remains unstable
over its existence domain. The stable branch becomes unstable via a period
doubling bifurcation. As for the bounded periodic solution, a period-doubling
cascade occurs leading to a chaotic dynamics. Note however as long as an
widening crisis does not occur, the drift velocity remains locked to c = ±1.
After the widening crisis, the strange attractor is no longer bounded in the
comoving frame. The resulting dynamics is no longer locked and it is chaotic.
Examples for the symmetric and asymmetric cases are displayed in Fig. 7. For
the symmetric case, there is a competition between opposite transport solutions
which are unstable. The trajectory is unbounded but the mean position remains
zero. It is an anomalous diffusion like. For the asymmetric case, the dynamics is
similar but the resulting drift is non-zero. For the specific example in Figure 7b,
we obtain a net transport direction to the negative direction.
In the asymmetric case, despite the negative bias, there is range where only
the upward transport exists (γ ∈ [11.8457, 13.41639]). The ’trick” to obtain
this unnatural dynamics was, firstly, to introduce the small flow asymmetry
d which shifts the existence domains of the transport solutions c = +1 and
c = −1 of the symmetric case (Fig. 6a). Then, this region persists for a small
enough negative bias g. Note, without the flow asymmetry d, this region does
not exist. In this region, we have a particle motion opposed to the bias like
the ANM. To find a upwards dynamics due to the noise, we have to study its
influence.
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Fig. 8. Discrete stochastic particle dynamics at discrete times n governed by the
Eq. (9) with the fluctuation amplitude ε = 0.1 for two different values γ near γt

c:
γ = 14.7 and γ = 15 (long plateaux). Other parameters are fixed to um = 9, a =
0.65, d = 0.1, g = −0.1.

5 Absolute negative mobility

We consider an additional random force, then the ODE system (2) becomes

ẍ(t) = γ(u0(x(t)) sin(2πt)− ẋ(t)) + g + εξ(t) (9)

where ε is the amplitude of the fluctuating force, and ξ is a Gaussian stochastic
process such as < ξ(t) >= 0 and < ξ(t)ξ(t′) >= δ(t− t′) where δ is the Dirac
delta expressing that the noise is purely Markovian. In contrast to Machura
et al.[16], the bifurcation diagrams 3 and 6 show that stable bounded periodic
solutions do not coexist with unstable transport. Then, it is not possible to
obtain the same kind of ANM as ib Machura et al.[16] where the solution may
escape from the stable periodic solution allowing trajectories in the neighbor-
hood of the transport solution leading to the drift emergence. We propose
to study the influence of the noise near the onset of unbounded dynamics at
the widening crisis. Indeed, before the crisis and in its vicinity, contiguous
strange attractors are close together then a small noise may allow to jump
from a strange attractor to another one. The simulation near the strange at-
tractor corroborates this scenario (Fig. 8). We observe a dynamics similar to
the one which occurs after the crisis. Long epochs of bounded dynamics are
interrupted by a jump to the upward pore. We do not observe jump to the
downward direction. This is due to the asymmetry of the strange attractor.
Note that the simulation in the symmetric case does not display a preferential
direction. Away from the crisis by taking larger value of γ, the duration of
the bounded dynamics events are statically longer. Indeed it is quite difficult
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to distinguish this noisy dynamics from the deterministic dynamics. The noise
triggers the crisis transition leading to the same kind of dynamics. Since the
transport is opposed to the bias and it does not exist without noise, we have
found an example of Absolute Negative Mobility in this framework.
In contrast, once the deterministic crisis occurred, the noise does not notably
modified the dynamics and the drift velocity. It seems to have a negligible influ-
ence on the onset of the synchronized dynamics too. Moreover, the small noise
does not allow to escape from the attraction basin of the periodic transport
solution so that it does not destroy the synchronized transport.

6 Conclusion

In this paper we have examined a nonlinear ODE and its perturbation by a
small gaussian noise as a model for inertia particle transport via a micro-pump
device. The equation is similar to ratchet problem where the ratchet flow u0(x)
variations play the role of the periodical potential in the ratchet literature.

The deterministic analysis showed that synchronized transport solutions
exist for inertia particles with drag coefficient about 10. Their existence is not
related to asymmetry. Indeed for the symmetric case, the symmetric solution
s0 or sm becomes unstable via a pitchfork bifurcation. This latter becomes
unstable via period-doubling cascade leading to a bounded strange attractor.
This strange attractor is destroyed via a widening crisis allowing the emergence
of an unbounded dynamics. Finally, via a synchronization transition the peri-
odic transport appears. In the symmetric case, the transports with c = +1 and
c = −1 emerge at the same onset. A similar scenario occurs in the asymmet-
ric case, but the onset of downward and upward transport no longer coincide.
When the asymmetry is small, both transport directions exist but their exis-
tence domains are shifted. Thus there is a range of the drag coefficient where
only the upward transport exists even if the bias is negative.
A weak noise does not modify the synchronized dynamics. However it may
trigger the onset of the unbounded dynamics created via an widening crisis.
We show that for subcritical parameters, a net drift may appear due to the
noise. Indeed, it allows jumps between consecutive bounded strange attrac-
tors. We obtain an Absolute Negative Mobility near the onset of the upward
transport. This mechanism differs from Machura et al.[16] and occurs in a
very small range. That shows that the study of the deterministic case and
the continuation method is powerful to understand and to find such dynamics.
The found ANM is generic of slightly biased ratchet problem. In fact, the sce-
nario involves generic non-linear phenomena: symmetric breaking and crisis in
a spatial periodic problem. The existence of an upwards-transport opposed to
the bias can be understood as a perturbation of the symmetric case where up
and down dynamics coexist. Then for a small perturbation both should exist.
Finally, it is quite known that the noise allows to escape from an attractor as
it occurs in our case. So, the ANM scenario presented in this paper has a quite
universal aspect for ratchet problem.
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