
Chaotic Modeling and Simulation (CMSIM) 2: 167–176, 2016

The Spectral Chaos in a Spherically Centered
Layered Dielectric Cavity Resonator

Zoya E. Eremenko, Ekaterina S. Kuznetsova, Luka D. Shostenko,
Yuriy V. Tarasov, and Igor N. Volovichev

O. Ya. Usikov Institute for Radiophysics and Electronics of National Academy of
Sciences of Ukraine, Kharkov, Ukraine
(E-mail:zoya.eremenko@gmail.com)

Abstract. This paper deals with the study of chaotic spectral wave properties of
a cavity sphere layered central-symmetric dielectric resonator. The analytical and
numerical research was carried out. It is determined that resonant frequencies of a
given layered resonator accurately coincide with the resonant frequencies of inhomo-
geneous resonator with specified oscillation indices if the radius of inner sphere is
much less than the outer resonator radius. Increasing the radius of inner sphere these
resonant frequencies shift to smaller values and new additional resonances appear,
which cannot be identified by the same oscillation indices and it can be considered as
possible chaotic presentation. The probability of inter-frequency interval distribution
has signs of spectral chaos in studied structure.
Keywords: Sphere dielectric central-symmetric resonator, spectral wave properties,
resonant frequencies, oscillation indices, signs of spectral chaos, probability of in-
ter-frequency interval distribution.

1 Introduction

Our aim is to study the chaotic properties of a layered spherical dielectric cavity
resonator with a inner centered spherical dielectric sphere. Dielectric resonators
are known to be widely used in optics, laser technology, solid-state electronics
(see, for example, Refs. [1,2]). The change of the oscillation spectrum of such
resonators strongly depends on both inhomogeneities in the dielectric filling
and the resonator shape. For practical applications it is extremely important
to know the degree of regularity or randomness of the frequency spectrum.
The detailed analysis of the spectrum chaotic properties for different resonant
systems can be found, for instance, in [3].

The resonators with electromagnetic wave oscillations are often similar to
classical dynamic billiards. Spectral properties of classical dynamical billiards
have been thoroughly studied to date (see, e. g., the book [4]). The spectral
properties of wave billiard systems are the subject of study by the relatively
young field of physics, called “quantum (or wave) chaos” [5,6]. Using the
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terminology given in paper [7], such systems can be called composite billiards.
It is necessary to underline that the presence of additional spatial scale in wave
billiards — the wavelength λ — results in serious limitations when trying to
describe the chaotic properties of their spectra using the ray approach. In
particular, there exist the ray splitting on the interface of different edges in the
composite billiards [8,9], which cannot be captured by the classical dynamics.
Thus, the ray approach is not well-suited to wave billiard-type systems, so their
chaotic properties have to be studied, in general, applying of wave equations.

Statistic analysis of the wave system spectrum is mainly based on the meth-
ods used in the classical chaos dynamics, for instance, on the study of inter-
frequency interval distribution, spectral rigidity and so on [5,6,10]. The goal
of the present work is to investigate spectral properties of layered cavity res-
onators starting from electromagnetic wave approach. To reach this objective
we apply the calculation technique consisting of rigorous splitting of oscillation
modes by means of the operational method. This technique was used previously
for inhomogeneous waveguides and resonators with bulk and surface inhomo-
geneities [11–14]. The result of the mode splitting in such complicate and
conventionally non-integrable systems is the appearance of specific potentials
of operator nature in the wave equation. The structure of these potentials gives
rise to the possibility of studying the oscillation spectrum both numerically and
analytically.

The spectrum of spherical resonator with homogeneous dielectric inside is
strongly degenerate due to the central symmetry. The degeneracy leads to the
clustering of the probability distribution maximum for inter-frequency intervals
near zero value. It is quite natural to expect that when the spherical resonator
becomes layered due to the spherical inner dielectric the spectrum degeneracy is
removed. This is strongly expected to be so at least in the case of the symmetry
violation.

In the present work we attempt to answer the following questions. What
is the type of the probability distribution for inter-frequency intervals in the
case of composite (layered) spherical resonator with and without the spatial
symmetry? What is the qualitative nature of deformation of the probability
distribution when spatial symmetry is violated? What are the signatures of
classical chaos in this distribution?

2 Problem statement and basic relationships

We are interested in eigen-oscillations of an electromagnetic resonator taken
in the form of ideal conducting sphere of radius Rout filled with homogeneous
dielectric of permittivity εout, in which a centered inner dielectric sphere of
smaller radius Rin is placed, whose permittivity is εin (see Fig. 1).

The electromagnetic field inside the resonator can be expressed through
electrical and magnetic Hertz functions, U(r) and V (r) [15]. Using these
functions, we can go over to Debye potentials ΨU,V (r) ΨU (r) = r−1U(r) and
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Fig. 1. Composite double-spherical dielectric cavity resonator.

ΨV (r) = r−1V (r) [15,16] both obeying the same Helmholtz equation,
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(ϑ and ϕ are polar and azimuthal angle variables), but different independent
boundary conditions,
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The first condition belongs to the class of so-called Robin’s boundary conditions
(see, e. g., Ref. [17]), the second one is the well-known Dirichlet condition.
The conditions (2) for the electrical and magnetic Debye potentials allows to
find these potentials independently from each other, which may be interpreted
as the possibility to separate electrical and magnetic-type oscillation in the
inhomogeneous spherical resonator.

We will consider the resonator inhomogeneity according to quantum-mechanical
perturbation approach. If we take the inhomogeneity as a potential in Schrodinger
equation we can write the permittivity in the equation (1) as a ”weighted” sum
of permittivities of inner and outer dielectric spheres,

ε(r) = εinΘ
(
r ∈ Ωin

)
+ εoutΘ

(
r ∈ Ωout \Ωin

)
. (3)
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Here Θ(A) stands for the logical theta-function determined as

Θ(A) =

{
1 , if A = true

0 , if A = false
, (4)

Ωin and Ωout are the portions of spatial points belonging to inner and outer
spheres, respectively. It is convenient to present function (3) as a sum of its
spatially averaged part

ε =
εinVin + εout(Vout − Vin)

Vout
, (5)

with Vin/out = (4π/3)R3
in/out being the volumes of inner and outer spheres, and

the summand ∆ε(r), the integral of which over the whole resonator volume is
equal to zero. The solution to Eq. (1) with exact permittivity value instead of
its average one given by (5) will be the starting point to build the constructive
perturbation theory.

Equation (1) with coordinate-independent permittivity can be solved by
the method described in a number of textbooks (see, e. g., Ref. [18]). The
general solution can be presented as an expansion in complete orthogonal
eigenfunctions of the Laplace operator, which in spherical coordinates have
the form [19,20]
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Here, to simplify the equations we introduce the vector mode index µ =
{n, l,m}, Jp

(
u) is the Bessel function of the first kind, Y ml (ϑ, ϕ) is the spherical

function,
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Pml (t) is the Legendre function. The coefficients λ
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The eigenvalue of the Laplace operator, that corresponds to eigenfunction (6),
is degenerated over azimuthal index m,

Eµ = −k2µ = −

(
λ
(l)
n

R

)2

. (9)

with the degeneracy equal to 2l + 1.

The spectrum of the resonator with nonuniform permittivity (3) can be
found through the calculation of density of states ν(k) (see, e. g., Ref. [21]).
Function ν(k) can be expressed through the Green function of wave equation
(1) with complex-valued frequency account for dissipation in the resonator,

ν(k) = π−1Im
{

Tr Ĝ(−)
}
. (10)

Here Ĝ(−) is the advanced Green operator corresponding the equation (1) with
negative imaginary part in the complex frequency plane. The Green func-
tion (considered as the coordinate matrix element of operator Ĝ(−)) obeys the
equation [

∆+ εk2 − i/τd − V (r)
]
G(r, r′) = δ(r− r′) , (11)

where the term V (r) = −k2∆ε(r) will be interpreted as the effective poten-
tial (in the quantum-mechanical terminology). In comparison with Eq. (1),
equation (11) is supplied with imaginary term i/τd which takes phenomenolog-
ically into account the dissipation processes in the bulk and on the surface of
the resonator. Strictly speaking, the dielectric loss in the resonator depend on
the frequency in the general case. Yet now we will neglect this dependence to
simplify further investigations.

For the numerical calculation purposes it is suitable to go over from the
coordinate representation of Eq. (11) to the momentum representation. Equa-
tion (11) then takes the form of an infinite set of coupled algebraic equations,

(
εk2 − k2µ − i/τd − Vµ

)
Gµµ′ −

∑
ν 6=µ

UµνGνµ′ = δµµ′ . (12)

Here the quantities Vµ and Uµν , which we will term the intramode and the
intermode potentials, are the matrix elements of potential V (r) taken in the
basis of functions (6),

Uµν =

∫
Ω

dr 〈r;µ|V (r) |r;ν〉 = −k2(εin − εout)Iµν , (13a)

Vµ = Uµµ = −k2(εin − εout)
[
Iµµ − Vin/Vout

]
, (13b)

Iµν =

∫
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dr〈r;µ|r;ν〉 .
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In the case of strictly centered outer and inner dielectric spheres the integrals
in the relationships (13) are calculated rigorously, and the result is as follows,

Iµν(Ωin) =2Qδlµlν δmµmν
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Here we have introduced the scale parameter Q = Rin/Rout 6 1 that describes
the degree of the resonator geometric inhomogeneity.

3 Numerical results and discussion

The set of basic equations (12) can, in principle, be solved analytically using
the operator technique of mode separation [14]. Yet, in view of the tediousness
of that technique, in this study we examine equations (12) numerically. To ob-
tain the solution we have elaborated programming software that calculate the
resonator Green function, determine its maxima locations, and also build the
inter-frequency distribution function. It is necessary to accentuate that such
a calculation task is quite resource-intensive, and it leads to rigid constraint
for the number N of oscillation modes taken into account. The computational
complexity grows much faster than N3. Such a dependence on the number
of analyzed oscillations can be explained by the complexity of numerical inte-
gration of oscillating functions (Bessel functions, spherical Legendre functions)
with the growing number of their zeros on the interval of integration. The
main numerical calculations were carried out on the computing cluster at the
Institute for Radiophysics and Electronics of National Academy of Sciences of
Ukraine, which is a part of the infrastructure of the Ukrainian National Grid
(UNG). Based on the available computation resources (CPU clock speed 2.5
GHz, RAM 1.5 Gb/core), we were compelled to limit the number of harmonics
by 10,000 and no more than 2000 harmonics for an arbitrary value of hetero-
geneity. The calculation of each harmonics takes from a few seconds for the
long-wavelength modes to tens of minutes for short ones. To speed up the cal-
culations and the possibility to operate with a greater number of harmonics,
the parallelization of computational algorithm with the use of MPI technology
was implemented. Note that the task under consideration is highly scalable.
Thus, the parallel computation provides a performance increase. It is almost
proportional to the number of computing nodes involved. All calculations were
performed in the standard representation for double-precision real numbers.
Relative error of calculation does not exceed 106, and the main source of error
was the accuracy of numerical integration and calculation of special functions.

From Eqs. (12) we have calculated all diagonal elements of the Green func-
tion matrix ‖Gµµ′‖. In Fig. 2, the density of states (DoS) of the resonator is
presented, which is calculated using the definition (10). It can be seen that the
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Fig. 2. The whole frequency spectrum as the frequency dependence of the imaginary
part of the sum of diagonal Green functions for the composite cavity resonator with
centered dielectric spheres: A — Q=0; B — Q=0.583; C — Q=0.897; D — Q=0.998.
The permittivities of the inner and outer spheres are εin= 2.08, εout = 1.0. The
dissipation value corresponds to τd = 1000.

DoS graph becomes thicker with growing the radius of inner dielectric sphere.
When the inner radius value goes to the outer one, the DoS is getting thinner.
In this case the resonator filling tends to become homogenous with the effective
permittivity εout. Thus, the average DoS maximal value is observed at Q → 1.

To analyze the oscillation spectrum we examine the probability of the inter-
frequency intervals (nearest-neighbor spacings, NNS) between adjacent reso-
nances, P (S). Conventionally, the spectrum unfolding is used for this purpose,
implying the normalized mean inter-frequency distance to be equal to unity.
Fig. 3 demonstrates distribution P (S) for different inner radii and dissipation
values. For τd= 100000 (the loss is practically neglected) and Q=0 we have
convention with Poisson distribution, Pp(S) = exp(−S). This suggests the
resonance frequencies to be completely uncorrelated. With the increase in the
dissipation value (for example, τd =100) we obtain the distribution function

that tends to Wigner form, Pw(S) = 0.5πS exp(−πS
2

4 ). Thus, we are led to
conclude that the presence of dissipation in the resonator results in the chaotic
behavior of oscillation modes.

The essential difference between NNS distribution of the chaotic spectrum
and the regular one is the presence of mode “repulsion” (the downfall of P (S)
at low values of S). The repulsion of modes with close frequencies in the
chaotic spectrum can be explained as follows. When the resonator infill is
homogeneous, different oscillation modes are independent of each other and
do not interact with each other even if their own frequencies coincide, i. e. if
they are in a degenerate state. Any heterogeneity lifts the degeneracy, and the
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Fig. 3. The probability of inter-frequency interval distribution at different dissipation
values and inner radii : A — τd = 100000, Q=0; B — τd = 100, Q=0.67.

natural frequencies of different modes change in different ways, depending on
the degree of heterogeneity influence. That is, there is a kind of “repulsion” of
oscillations modes. The larger the impact of heterogeneity be, the greater is
the repulsion effect.

In Fig. 4, the intensity of a partial Green function Gµµ from Eq. (12) on
wave number is shown for the particular polar and radial indices and different
inner sphere radii Rin. At Rin=0 we observe one oscillation mode only. We will
call it the main resonance for the selected Green function. With the increase
in the inner radius Rin, additional resonances appear at the frequencies that
coincide with main resonances of the rest of radial modes with the definite
polar index.

In Fig. 5, the frequency dependence of the imaginary part of the sum of
diagonal Green functions for the oscillations with two different polar indices.
As the radius Rin increases, we observe that the resonances 1 and 2 interchange
their relative position. Thus, we see the occasional and unpredictable oscilla-
tions moving. We explain this behavior of resonances as a signature of wave
chaos arisen due to inhomogeneity of the resonator.

Thus, we have developed the statistical spectral theory of the centrally sym-
metric layered cavity resonator with homogeneous and inhomogeneous infill.
Numerical investigation of the resonator frequency spectrum was also carried
out. The signature of chaotic behavior of the resonator spectrum is demon-
strated. We have found out that the homogeneous resonator has inter-frequency
interval distribution similar to the Poisson distribution typical for the spectrum
with uncorrelated inter-frequency intervals. In the presence of dissipation in
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Fig. 4. Frequency dependence of the logarithm of partial normalized Green function
for different inner radii: 1 — Q=0, 2 — Q=0.448, 3 — Q=0.672, 4 — Q=0.8968, 5 —
Q=0.9977, 6 — Q=0.9997. Polar index is 3, radial index is 1. The permittivities of
the inner and outer spheres are εin=2.08, εout=1.0. The dissipation value corresponds
to τd = 100000.

the resonator, the NNS distribution tents to the distribution of Wigner form,
which clearly demonstrates the effect of “mode repulsion”.
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