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Abstract. The nonlinear dynamics of switching power converters has been actively stud-

ied during several last decades, proving the existence of extremely complex dynamical 

scenarios and uncommon routes to chaos in this kind of circuits. The main assumption in 

the majority of researches was that the control circuitry consisted of ideal elements, dis-

carding all parasitics of feedback circuitry components. However, recently it has been 

shown that the inherently arising nonidealities, such as delays, could lead to the drastic 

changes in the overall dynamics of the system. This research is dedicated to the investi-

gation of the effects of the delays on the global nonlinear behavior of switching DC-DC 

converters on the basis of complete bifurcation analysis, providing the most comprehen-

sive information on the causes and consequences of all nonlinear phenomena in the sys-

tems under study. 
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 Introduction 
 

Active research performed during several last decades showed that the com-

monly used linearized models, describing the dynamics of switching power con-

verters (SPC) are not capable of predicting the majority of instabilities, occur-

ring in those systems [1,2]. Thus the classical models fail to provide reliable in-

formation for the feedback designers that would allow the development of stable 

control loops. The limited applicability of mentioned models has led to the de-

velopment of some alternative approaches, based on non-linear models and 

analysis methodologies. While making the study of global dynamics of these 

systems more complicated, the latter approaches allow increasing the robustness 

and reliability of designed systems as the great amount of new unstable and po-

tentially dangerous regimes could be detected. 

The vast majority of researchers, working on the analysis of non-linear 

dynamics of SPC, have focused on the development of simplified models that 

could be used within their investigations. However, it has been shown that 

ignoring some unavoidable non-idealities of the control circuitry may lead to 

erroneous results and misinterpretation of analytically obtained data [3]. One of 

the most noticeable effects, that should be taken into account during the analysis 
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of such feedback controlled systems, is the inherent delay of each component of 

the control loop. The delay of individual element in the analog feedback loop is 

not large enough to influence the global dynamics of the system. Though as all 

the delays are summed together, the time lag in the propagation of the control 

signal becomes essential.  

The current paper studies the effects of the magnitude of the overall delay on 

the dynamics of one of the most widely used SPC – boost converter under 

current-mode control. It is assumed that the analog feedback loop is 

implemented and the appropriate values of delays are introduced. The analysis 

of bifurcation patterns is based on the discrete-time model of mentioned DC-DC 

converter and the Method of Complete Bifurcation Groups (MCBG).  

 The structure of the paper is as follows. Second section describes the 

principles of operation of the boost converter as well as presents the 

corresponding model. Third section provides the complete bifurcation analysis 

of SPC, changing the most relevant circuit parameters. The last section is 

dedicated to conclusions about the results obtained in Section 3, defining some 

common points and showing the perspective of future research.  

 

2  Model of the boost converter with delays 
 

The simplified schematic of the boost type SPC under current-mode control 

including delay is shown in the Fig.1. It consists of two active elements: 

capacitor C and inductor L; two switching elements: one of them marked as S 

could be a MOSFET transistor (the state of which is controlled by the voltage 

applied to the gate), the second one – D–is the diode (that is turned ON or OFF 

in accordance to the difference of voltages between its terminals). R, Vin and Vout 

represent accordingly simple resistive load, input and output voltages. Δtd 

represents the total delay of all elements in the control loop. 
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Fig.1. Simplified schematics of boost SPC under current-mode control 
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The control circuitry, shown above the main power plant, consists of current 

sensor (CS), comparator (comp), RS type flip-flop as well as clock element. 

The principle of operation is as follows.  When the switch S is in the ON 

(conducting) state, the energy is transferred to the inductor and the load is 

provided with the necessary amount of energy by the output capacitor. During 

the OFF interval the required output voltage is maintained by the input voltage 

and the energy released from the collapsing magnetic field of the inductor. 

As it could be seen from Fig.1, the position of the switching element S is 

defined by the output signal of the control circuitry vcontr. In the case of ideal 

control loop with Δtd=0, the switch is turned ON at the arrival of the next clock 

pulse and is switched OFF as the value of inductor current, obtained from the 

current sensor, reaches the reference value (see Fig. 2.a). However, real analog 

control loops include the non-zero delay, which is formed by the sum of current 

sensors’, comparator’, RS flip-flops’ as well as MOSFET drivers’ switching 

delays that are unified in the single block Δtd in the Fig.1. 
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Fig.2. Waveforms of the inductor current and control signals: a) ideal case;  

b) including delay Δtd 

 

The delay causes the switch not to turn OFF at the moment the control 

parameter reaches some reference value defining new dynamical scenarios (see 

Fig. 2.b). The maximal value of sensed inductor current in this case is not 

limited by predefined reference Iref  and becomes dependent on the delay, 

reaching the value Iref+m1*Δtd, where the slope of the rising inductor current 

m1=Vin/L. 

The dynamics of this type of energy converters could be described by systems 

of differential equations. However, the bifurcational analysis on the basis of this 

model would require great amount of computations. Another more effective 

approach is the use of discrete-time model in the form of iterative map that 

would allow obtaining exact values of inductor current and capacitor voltage 

samples at every switching instant without excessive effort [4]. The proposed 
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model for the boost converter including the delay is as follows. 

First, it should be noted that the overall dynamics of the converter is governed 

by the positions of the samples of inductor current in correspondence to the two 

borderlines shown in Fig.3. The first borderline defines the case when the 

inductor current reaches the shifted reference value exactly at the arrival of next 

clock pulse (see Fig. 3.a). The second borderline represents in value for which 

the next sample in+1 falls exactly to the Iref for the falling inductor current (see 

Fig. 3.b).  
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Fig. 3. Definition of borderlines and corresponding positions of inductor 

current samples: a) Iborder1; b) Iborder2 

 

Thus the borderlines are: 
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/112 dtmborderIborderI  , 
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where m1=Vin/L, Δtd - the value of delay, T– switching period, Iref– reference 

current, L - value of inductance, R– load resistance; parameter α could be found 

using methodology proposed in [5] as the positive solution of this quadratic 

equation: 

drefinin tmILTVRV  1
2 3//)1(  . 

(3) 

Thus, taking into account (1)-(3), the discrete-time model is defined as: 

1. if in<Iborder1 : 

)/exp(1 RCTvv nn   

                                 LTinVnini /1  ; 

(4) 

2. if Iborder1<in<Iref : 

              
  inVofftKofftKoffmtnv  )sin(2)cos(1)exp(1   (5) 
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3. if  Iref<in<Iref+m1Δtd, then there are two possible scenarios, which are 

dependent on the value of the inductor current in the previous cycle: 

3.1. if Iborder1<in-1<Iborder2, than the dynamics of the system between in and in+1 

is governed by: 
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(6) 

3.2. if in-1<Iborder1,than the dynamics of the system is governed by (5), 

where: LCp /1 ; 22 mp  ; inonn VmtvK  )2exp(1 ; 

  /))2exp((/)( 12 inonndref VmtvmCtmIK  ; inn VvK 3 ;

  /)(/4 innn VvmCiK  ; dnrefon tmiIt  1/)( , onoff tTt  ;

LVm in /1  . 

    Parameters of the system under investigation are as follows: Vin=3.3 (V); 

L=150 (µH); C=2 (µF); R=40 (Ω); Iref= 0.2…0.7 (A); T=10 (µs); 

Δtd=(0…0.2)*T (s). 

 

3 Complete bifurcation analysis 
 

The analysis of bifurcation patterns in this paper is based on the relatively 

new methodology – Method of Complete Bifurcation Groups – originally 

developed in the Institute of Mechanics of Riga Technical University for the 

analysis of complex dynamics of highly nonlinear mechanical systems [6]. This 

approach has been applied to the great variety of dynamical systems, including 

mechanical, biological and electrical ones [7-9]. The main distinctive feature of 

the MCBG is that the construction of bifurcation diagrams is not based on the 

widely used brute-force approach, when only stable periodic regimes are plotted 

using the process of simple iterations (also called natural transition). The 

mentioned brute-force method does not provide the complete information even 

about all existing stable regimes, not to mention unstable ones that are not taken 

into account in this approach. The MCBG is based on the numerical calculation 

of all stable and unstable periodic regimes (up to period of interest) in the 

system with following continuation of branches in the bifurcation diagram as 

some of the system’s parameters are varied. This approach allows the 

construction of complete bifurcation diagrams, depicting even small regions of 

periodicity as well as unfolding unambiguous interconnections between 

different periodic as well as chaotic modes of operation. 
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On the basis of MCBG the complete bifurcation diagrams for the boost type 

converters with ideal feedback loop and for the system taking into account the 

delays in the control circuitry, have been constructed. The most obvious choice 

of the primary bifurcation parameter is the value of Iref that could be changed 

during the operation of the SPC in order to preserve the desired output voltage. 

The complete bifurcation diagrams obtained for the system with a various 

delays allow detection of some most distinctive changes in nonlinear dynamics 

of DC-DC converters as we vary the bifurcation parameter. 

First, the complete bifurcation diagram for Δtd=0 (i.e. in the ideal model 

without any delays) is constructed (see Fig. 4). Dark lines represent stable 

periodic regimes, light lines – numerically calculated unstable regimes, dashed  

lines depict the borderlines defined in (1) and (2), the shaded area represents the 

chaotic mode of operation. 
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Fig.4. Complete bifurcation diagram of the boost converter with ideal 

control loop 

 

The increment of reference current leads to the smooth transition from P1 to 

P2 operation through classical period-doubling bifurcation at Iref≈0.36 (A). At 

point (A) the border collision (BC) with Iborder1 and Iborder2 appears (these borders 

overlap in the case of ideal system), leading to the formation of 4-piece chaotic 

attractor, converging to the robust chaotic area. The chaos is robust in the sense 

it is not interrupted by presence of stable periodic windows within the whole 

range of increasing bifurcation parameter. The MCBG allows the verification of 

the fact that in this case the great amount of unstable periodic orbits of P4, P8, 

P16, P32 etc. appear at the point of the first BC (see Fig.4. point (A), where only 

unstable branches of P4 and P8 are shown for the sake of simplicity). Thus the 

overall classical period doubling cascade is formed within the single point in the 

bifurcation diagram without the appearance of any stable subharmonic orbits. 
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All the subsequent BC do not allow the formation of any stable orbits (see e.g. 

points (B) and (C) in the Fig.4.). 

The structure of chaotic modes of operation and the mechanisms of transition 

to chaos noticeably change with the introduction of even slight delay in the 

control circuitry of DC-DC converter. 

Fig.5 shows the bifurcation diagram of boost converter for Δtd =0.05*T (s). 

As it could be seen, the presence of delay does not affect the way the main P1 

mode of operation losses its stability – the classical period doubling bifurcation 

is observed. However, the following dynamics is formed by the non-smooth 

nature of collisions with two borderlines (see (1) and (2)), crossing the branches 

of bifurcation diagram. 

Iborder2 causes the appearance of discontinuity in the stable branch of P21 

regime (see Fig. 5. point (D)) after which the next collision with the Iborder1 (see 

Fig. 5. point (E)) changes the bifurcation sequence (in comparison to Fig.4) – 

the non-smooth transition to stable P4 regime is observed. On the interval Iref = 

0.45…0.55 (A) the transition to robust chaos is defined not by the multiple piece 

chaotic attractors, but by the sudden appearance and non-smooth transitions of 

subharmonic modes of operation caused by BC with both of the defined borders. 
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Fig.5. The complete bifurcation diagram of the boost SPC with Δtd=0.05*T 

(s) 

One distinguishing feature of the diagram, shown in the Fig. 5, is that there is 

the region of coexistence of two stable P2 regimes in the neighborhood of the 

first BC point (around Iref  = 0.4 (A)). Two different types of fixed points could 

be detected here – one is the attracting node with both characteristic multipliers 

real (P21), and the other – spiral attractor with complex conjugate characteristic 

multipliers (P22). Each of the regimes has its own basin of attraction. However, 

this bistability region is not important for practicing engineers, as it exists for 

very narrow range of bifurcation parameter, the periodicity of coexisting 

regimes is the same and the coordinates of fixed points are relatively close, so 
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any excessive voltages or currents that could damage components of the 

switching power converter are not observed in this case.  

As it could be seen from Fig.5, the P22 regime after the collision with Iborder1 

at point (E) does not just lose its stability, but disappears, meaning that the 

presence of stable or unstable period-2 regimes could not be detected to the right 

of the BC point with any numerical methods. However, the unstable branch of 

this regime is later detected in the vicinity of point (F), where the P4 regime 

disappears. The P4 regime reappears at point (G). The nature of the 

disappearance and sudden appearance of such periodic regimes in non-smooth 

systems up to author’s knowledge is not yet clear and should be studied in 

details. In [10] this phenomena has been defined as “cutting border collision”, as 

just after BC point no periodic orbit of the same periodicity is observed. 

In the region between Iref = 0.5…0.6 (A), the appearance of P10 window is 

defined by both borderlines. The collision with Iborder1 leads to the non-smooth 

transition from chaotic mode of operation to P10 orbit (see Fig.5 point (H)). 

However, as the value of Iref is further increased, the periodic window does not 

form classical period doubling route to chaos – the collision with Iborder2 defines 

direct abrupt transition to chaotic mode of operation (see Fig.5 point (I)). 

The described P10 regime is the last periodic window within the chaotic 

region and all the following periodic orbits occur to be unstable, not causing the 

interrupts of robust chaotic operation as the bifurcation parameter is varied.  

It should also be mentioned that the first relevant transition from the only 

practically acceptable stable P1 operation to P2 mode in this case appears 

almost at the same value as in the system without the delayIref≈0.36 (A). Thus, 

the introduction of relatively small delays do influence the dynamics of the 

system only after the first smooth period-doubling bifurcation. 
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Fig. 6. The bifurcation diagram of the boost converter with Δtd=0.2*T (s) 

The last complete bifurcation diagram (see Fig.6) depicts the case of Δtd = 

0.2*T (s), when the complete structure of the bifurcation diagram drastically 

changes in comparison to Fig. 5. For small values of Iref two coexisting regimes, 
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namely P1 and P22, define the dynamics of the SPC. In this case the system 

could not reliably operate in the required stable P1 mode, as even small amount 

of noise (always present during the operation of SPC) could lead the system to 

operate in P22 regime with much higher voltages and currents. At Iref ≈ 0.32 (A) 

the smooth transition from P1 to P21 regime occurs. However, no period-

doubling route to chaos is observed for this branch of bifurcation diagram, as 

the P21 branch disappears just after the collision with Iborder2 (see Fig. 6 point 

(K)). It is interesting to note that the collision of P22 regime with the same 

borderline does not change the topological structure of this branch (see Fig.6 

point (J)). The BC at point (L) causes disappearance of P22 regime and 

transition to stable P4 mode of operation that subsequently does not lead to the 

formation of chaotic region through period-doubling cascade, as it “cut off” at 

point (N).  

The subsequent chaotization of the system is governed by the appearance 

of P6 orbit at point (M) that forms the chaotic attractor at Iref ≈ 0.53 (A) and 

also disappears after the collision with Iborder2 (see Fig.6 point (0)). The 

subsequent chaotic region is robust, as the two borderlines do not allow the 

formation of stable periodic orbits or coexisting attractors. 

 

4 Conclusions 
 

This paper showed that the discrete-time model of the boost type SPC under 

current-mode control could be effectively improved, including the value of total 

delay in the control loop. The results of complete bifurcation analysis confirm 

that even small values of delay may drastically change the structure of 

bifurcation diagrams, causing the appearance of highly non-smooth events and 

uncommon routes to chaos. The most distinctive phenomena include the 

appearance of coexisting attractors even in the region of P1 operation, as well as 

sudden disappearance and reappearance of stable and unstable periodic regimes 

after border collisions. The obtained results prove that it is not possible to 

provide reliable prediction of operating modes and their stability of SPC without 

taking into account time lag effects. It should be noted, that relatively small 

values of delays (up to 20% of switching period) were chosen, considering the 

analog control loops. However the typical values of delays in digital control 

circuitry could be much greater and the effects of these delays on the global 

dynamics of SPC will be addressed in the future research.  
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