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Abstract. A new manner of estimating complexity, suitable for short time series, is
proposed. Final part of a time series we represent as linear combination of previous
subseries. Permutations inside subseries affect constants of the linear combination.
Complexity Cmp is defined thorough the changes of these constants. In other to jus-
tify such approach, Cmp is related to the number of different frequencies in regular
oscillations, Lyapunov exponent, level of noise, accuracy of the Monte Carlo inte-
gration and coefficient of nonlinearity in the acting force expression. Increasing of
each of these five quantities is followed by increasing of Cmp. If the level of noise
and Lyapunov exponent are low enough, we distinguish short time series from clean
noise. Considering nonlinear damped oscillations of a particle, we mark an essential
property of chaos: if coefficient of nonlinearity is large enough, complexity of chaotic
motion is inside the interval of noise complexity, although there is not fluctuating
force acting on the particle. Computing Cmp as a function of the time series final
point, we can forecast this point if there is a sharp minimum. We foreacast and es-
timate the forecasting reliability without knowledge about the rules producing time
series. Values of Cmp for some real time series are computed.
Keywords: Complexity, Time series, Chaos, Noise, Permutation, Linear combina-
tion, Lyapunov exponent, Nonlinearity, Forecasting.

1 Introduction

Bandt and Pompe proposed permutation entropy as a complexity measure for
time series, based on comparison of neighboring points [1,3]. Permutation en-
tropy is adapted for estimating complexity of short time series by changing
the time delay [18]. Roots of complexity like dimension, nonlinearity and non-
stationarity are related to the generating process, while roots of complexity like
noise, aggregation and finite length are related to measurement [8].
Complexity of real time series is correlated with predictability. It is hard to
forecast crisis from a short and noisy economic time series [6,9,13]. We can
forecast some time series using, for example, wavelets [4,10], neural networks
[2,7] or linear combination of logistic map [12]. It is of practical interest in
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finance [5] and technical systems optimization, also for fundamental research,
because the relation between prediction and learning the rule which has pro-
duced time series is not simple. Chaotic time series can be learned but not
predicted, while quasiperiodic time series can be predicted but not learned [7].
Here we consider time series of length 110. We make permutations in ten sub-
series which linear combination is equal to the eleventh subseries. The effect
of permutations is change of the linear combination constants. This change
determines complexity Cmp. After investigating of our approach adequacy,
computing Cmp of different regular, chaotic and stochastic time series, we
show that our conception is useful in forecasting. We can approximate the
110th point and estimate the reliability of this forecasting. Cmp is computed
for many real time series.
The basic difference between permutation entropy and Cmp is the following.
One computes permutation entropy counting the existing permutations in the
time series, while for Cmp we make a new time series by permutations inside
the original time series.

2 Definition of Cmp

We divide time series A1, A2, ..., A110 into eleven subseries. First ten subseries
are

F1,j = Aj

F2,j = Aj+10

F3,j = Aj+20 (1)

· · ·
F10,j = Aj+90

where j = 1, 2, . . . , 10. The eleventh subseries we represent as linear combina-
tion of previous ones. For many nontrivial time series the equations

A101 =

10∑
i=1

ciFi,1

A102 =

10∑
i=1

ciFi,2

· · · (2)

A110 =

10∑
i=1

ciFi,10

are independent and we can find out constants of the linear combination
< c1, c2, . . . , c10 >. We now make permutations inside first ten subseries and
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get new subseries

F ′1,1 = A10, F
′
1,j = Aj−1

F ′2,1 = A20, F
′
2,j = Aj+9

F ′3,1 = A30, F
′
3,j = Aj+19 (3)

· · ·
F ′10,1 = A100, F

′
10,j = Aj+89

where j = 2, 3, . . . , 10. The equations

A101 =

10∑
i=1

c′iF
′
i,1

A102 =

10∑
i=1

c′iF
′
i,2

· · · (4)

A110 =

10∑
i=1

c′iF
′
i,10

yield new constants of the linear combination < c′1, c
′
2, . . . , c

′
10 >. Using 2-norm

of vectors, we define complexity.

Cmp = −ln || < c′1, c
′
2, . . . , c

′
10 > − < c1, c2, . . . , c10 > ||

|| < c1, c2, . . . , c10 > ||
(5)

Complexity of many regular, chaotic and stochastic time series is computed.
Minimal value of Cmp increases in direction regularity–chaos–stochasticity (fig-
ure 1).

Fig. 1. Intervals where values of complexity are placed, for regular, chaotic and
stochastic time series of length 110.
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3 Regular Oscillations

Blue, red and green lines in figure 2 represent complexity of regular time series

N∑
j=1

cos
(
(2.9 + 0.6j)i− 0.041j

)
N∑
j=1

(−0.9)jcos
(
(2.8 + 0.7j)i− 0.03j

)
(6)

N∑
j=1

(−1.1)jcos
(
(2.1 + 0.8j)i− 0.09j

)
where i is time. High complexity corresponds to large number of different
frequencies N .

Fig. 2. Number of different frequencies is in high correlation with complexity.

4 Chaos and Noise

Computing complexity for 14000 of realizations of Gaussian noise we found

−5.221 ≤ Cmp ≤ 4.039 (7)

For time series generated by Feigenbaum map (table 1) we find:
(1) Cmp ≤ −6.46, if λ ≤ 0.18 (we distinguish from clean noise) and
(2) Cmp ≥ −1.7, if λ ≥ 0.19 (we can not distinguish from clean noise).
If a chaotic time series contains noise (table 2), we can see it as chaotic, com-
puting Cmp, if the level of noise and Lyapunov exponent are low enough.

5 Monte Carlo Integration

If we compute integrals using randomly distributed points (xj , yj) (j = 1, 2, ..., 110),
the integration is more accurate for more complex stochastic time series xj and
yj (table 3).
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q λ Cmp q λ Cmp

1.3 -0.425 -41.59 1.46 0.19 -0.9

1.35 -0.097 -36.36 1.794 0.351 -0.507

1.402 0.028 -8.31 1.57 0.361 0.008

1.405 0.054 -6.46 1.68 0.403 -0.825

1.41 0.094 -8.85 1.83 0.481 -0.01

1.42 0.11 -8.05 1.89 0.548 -0.37

1.45 0.17 -6.96 1.94 0.585 -1.7

1.44 0.18 -7.84 1.99 0.654 -0.5

Table 1. Lyapunov exponent and complexity for time series generated by zn =
1 − qz2n−1, with z0 = 0.7.

q λ (without noise) Cmp (with 0.1% of noise) Cmp (with 1% of noise)

1.405 0.054 -6.36 -3.55

1.402 0.028 -6.19 -3.7

1.406 0.069 -5.41 -3.6

1.44 0.18 -3.4 -2.95

1.94 0.585 -1.67 -1.44

1.99 0.654 -0.49 -0.43

Table 2. Lyapunov exponent and complexity for time series containing noise.

integral Cmpx1 Cmpy1 error1(%) Cmpx2 Cmpy2 error2(%)∫ 1.1

0
e−vcos25vdv -0.967 -0.812 5.9 -0.735 0.937 0.9∫ 2.53

0

[
0.3v + 2√

5+3sin4v

]
dv -1.42 -0.82 14.16 -0.26 -0.09 10.82∫ 5.41

0
ev−(v−2)2dv -0.992 -0.711 17.12 -0.472 0.178 5.04

Table 3. Complexity and errors of Monte Carlo integration.

6 Nonlinear Damped Oscillations

Here we analyze the coordinate of a particle x(0.1j), with j = 1, 2, ..., 110 and
acting force

F = −x− βx3 − 0.005v (8)

where β is coefficient of nonlinearity and v is velocity. Three types of motion
are found (table 4):
(1) regular, where Cmp < −11 and λ < 0,
(2) chaotic with Cmp < −5.221 and 0 < λ ≤ 0.063, we distinguish from noise
because it is outside of the interval of noise complexity and
(3) chaotic with large β, −5.221 < Cmp < 4.039 and 0.089 ≤ λ, we can not
distinguish from noise computing complexity.
If cofficient of nonlinearity is large enough, complexity of chaotic motion is
inside the interval of noise complexity, although there is not fluctuating force
acting on the particle. It is an essential property of chaos.



212 Z. Rajilić

β Cmp λ β Cmp λ β Cmp λ

1 -14.86 -0.032 7 -11.73 0.003 5941 -3.03 0.089

2 -17.80 -0.027 8 -11.82 0.007 6000 -1.43 0.098

3 -15.15 -0.015 9 -12.68 0.012 6300 -3.70 0.097

4 -13.92 -0.003 10 -14.58 0.010 6500 -3.66 0.095

5 -12.23 -0.002 20 -12.10 0.021 6501 -3.64 0.096

6 -11.14 -0.00009 500 -7.55 0.063 6541 -3.47 0.097

Table 4. Coefficient of nonlinearity, complexity and Lyapunov exponent of nonlinear
damped oscillations. We can see three types of motion: regular, chaotic with Cmp <
−5.221 and chaotic with −5.221 < Cmp < 4.039. Cmp is in correlation with β and
λ. Here x(0) = 0.1 and v(0) = −0.2.

7 Forecasting of the 110th Point

Let us assume that we know A1, A2, . . . , A109, but do not know A110. Com-
puting Cmp for different possible values of A110, not far from A1, A2, . . . , A109,
and looking for minimum, we try to forecast A110. We expect that if there are
any rules in A1, A2, . . . , A109, complexity will be minimal for A110 not breaking
these rules. In some cases forecasting is successful (figures 3 and 4). If com-
plexity is high, we can not forecast. The forecasting reliability is connected
with the minimum sharpness.
Fast computing with short time series and simple predictability and the fore-
casting reliability estimation are advantages of proposed forecasting method.
Moreover we can forecast the 110th point without any knowledge about the
rule producing A1, A2, . . . , A109.
Here we consider nonlinear damped oscillations (table 5) and time series gen-
erated by Feigenbaum map (figures 3 and 4). In section 8 we try to forecast
real time series (figures 6 and 7). Red line marks true value of A110.

β true forecasted minimal Cmp β true forecasted minimal Cmp

5000 0.0976 0.0976 -7.81 8500 0.1004 0.1004 -7.15

5600 -0.0974 -0.0972 -5.23 8600 0.0863 0.0864 -6.07

5635 -0.0881 -0.0881 -5.60 8700 0.0519 0.0521 -6.92

6000 0.0803 0.0820 -3.15 8711 0.0476 0.0478 -6.98

7500 0.0256 0.0256 -4.66 8719 0.0445 0.0446 -6.93

8148 -0.0146 -0.0146 -8.43 8800 0.0121 0.0123 -6.29

Table 5. Forecasting of 110th point for nonlinear damped oscillations. We can
compare true and forecasted value of x(11). For minimal Cmp equals -3.15, the error
is 2.1%. For significantly lower minimal Cmp the error is significantly lower.
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Fig. 3. Cmp as function of z110. Feig(-0.01,1.59,0.37) means that time series is gener-
ated by zn = 1− qz2n−1, with z0 = −0.01, q = 1.59 and Lyapunov exponent λ = 0.37.
Red line marks true value of z110. Here λ ≥ 0.36 and Cmp > −3. There is not sharp
minimum and forecasting is unsuccessful. Only in the case Feig(-0.8,1.59,0.36) we
have roughly approximate forecasting.
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Fig. 4. Here λ ≤ 0.24 and minimal Cmp is approximately from −9 to −6. In some
cases forecasting is very successful.
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8 Real Time series

8.1 Gross Domestic Product

Here we consider quarterly GDP in UK from 1955 until 2014 [15]. We compute
Cmp(p) using

Ai = GDPi+p, i = 1, . . . , 110 (9)

and find average values

1

11

10∑
p=0

Cmp(p) = −2.366 (10)

for years 1955–1984, and

1

10

129∑
p=120

Cmp(p) = −0.827 (11)

for years 1985–2014. This is significantly higher in comparison with the former
period.

8.2 Stock market index S&P 500

For a year we compute average complexity of the stock market index S&P 500
time series [16] (figure 5)

< Cmp >=
1

141

140∑
p=0

Cmp(p) (12)

using
Ai = SPi+p, i = 1, 2, . . . , 110; p = 0, 1, . . . , 140 (13)

Approximate forecasting is possible (figure 6). The results are denoted by
S&P500(year,p).

Fig. 5. Average complexity of the index S&P 500. < Cmp > is very high, but after
2008 complexity is relatively low.
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Fig. 6. Forecasting of the stock market index S&P 500 in 2013. It is better for deeper
and sharper minimum.
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8.3 RLC Circuit

The output voltage Ki is measured in the experiment with periodically driven
RLC circuit [11,14]. The largest Lyapunov exponent is 0.33. We take

Ai = Ki+p, i = 1, 2, . . . , 109 (14)

and try to forecast A110. The results are denoted by Kodba(p) (figure 7).

Fig. 7. Forecasting of the output voltage A110, measured in the experiment with
periodically driven RLC circuit. Forecasting is very accurate for deep and sharp
minimum of complexity.

8.4 EEG Time Series

EEG time series EEGj (j = 1, 2, . . . , 3595) is recorded on a patient undergoing
ECT therapy for clinical depression [17]. We take

Ai = EEGi+p, i = 1, 2, . . . , 110 (15)

and find out average Cmp in the interval s ≤ p ≤ s+ 90 (figure 8).

Fig. 8. Average complexity of the EEG time series, in the interval s ≤ p ≤ s + 90.
We find high jumping < Cmp >.
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9 Conclusion

Cmp, as a measure of complexity, is defined using permutation and linear
combination. Cmp is related with (i) number of different frequencies in regular
oscillations, (ii) Lyapunov exponent of the chaotic time series, (iii) level of noise,
(iv) accuracy of the Monte Carlo integration, (v) coefficient of nonlinearity
in the acting force expression. If complexity is low enough, it is possible to
forecast using Cmp and also to estimate the forecasting reliability. Reliability
of forecasting is large if mimimum of Cmp is sharp and deep. We can forecast
without knowledge about the rules producing time series.
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