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Abstract: In this paper, a new method for constructing chaotically synchronizing 

systems is proposed. Furthermore, a new control method for stabilizing a periodic orbit 

embedded in a chaotic attractor is proposed. The validity of these methods is shown by a 

property of Kannan mappings. It is shown that in some cases in which method of 

contraction mappings, proposed by Ushio (T. Ushio. Chaotic Synchronization and 

Controlling Chaos Based on Contraction Mappings, Physics Letters A, vol. 198, 14-22, 

1995.), cannot be applied to synchronize or control of chaotic systems, the method may 

be applied. Ultimately, a numerical example is given in order to present the results 

established. 
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1    Introduction 

Chaos, as a very interesting nonlinear phenomenon, has been intensively studied 

over the past decades. Dynamic chaos has aroused considerable interest in many 

areas of science and technology due to its powerful applications in chemical 

reactions, power converters, biological systems, information processing, secure 

communication, neural networks etc. In the study of chaotic systems, chaos 

synchronization and chaos control play a very important role and have great 

significance in the application of chaos. 

     Chaos synchronization seems to be difficult to observe in physical systems 

because chaotic behavior is very sensitive to both the initial conditions and 

noise. However, Pecora and Carroll [1] have successfully proposed a method to 

synchronize two identical chaotic systems with different initial conditions. Since 

then, a variety of approaches have been proposed for the synchronization of 

chaotic systems which include contraction mappings [2], variable structure 

control [3,4], parameters adaptive control [5,6], observer based control [7,8], 

nonlinear control [9-11], nonlinear replacement control [12], variable strength 

linear coupling control [13], active control [14,15] and so on.  

     On the other hand, chaos control is a very attractive subject in the study of 

chaotic systems. Since the method for controlling of chaos was first proposed by 

Ott et al [16], many chaos control methods have been developed extensively 

over the past decades such as contraction mappings [2], chaotic targeting 
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method [17,18], delayed feedback control [19] etc. Yu et al [20] used the 

contraction mapping method, proposed by Ushio [2], to stabilize chaotic 

discrete neural networks. 

     Neural networks have been widely used as models of real neural structures 

from small networks of neurons to large scale neurosystem. In recent years, 

investigation of chaotic dynamics in neural networks becomes an active field in 

the study of neural networks dynamics. Numerous chaotic neural network 

models have been proposed for investigation [20-22]. Among the spectrum of 

applications of chaos control, neural system is a particularly interesting research 

object of complex structures that it can be applied [23,24].  

     In this paper, a new method for synthesis of chaotically synchronizing 

systems based on Kannan mappings is proposed. Also, a new method based on 

these mappings to stabilize chaotic discrete systems is proposed. These methods 

are applied to synchronize and control chaotic discrete neural networks. A 

similar advantage of the methods proposed in this paper and the methods 

proposed by Ushio [2] is that the linearization of the system near the stabilized 

orbit is not required. However, in some cases in which the proposed methods of 

Ushio [2] are not applicable to synchronize or control chaotic systems, the 

methods may be applied. 

     This paper is organized as follows. In section 2, problem of chaos 

synchronization is studied. In section 3, problem of controlling chaos is 

discussed. Eventually, a numerical example is given in order to present the 

result investigated.  

 

2    Chaos Synchronization 

First, the following theorem which Kannan proved in 1969 is introduced.  

     Theorem [25] Let ),( dX be a complete metric space. Let T  be a Kannan 

mapping on X , that is, there exists )
2

1
,0[∈α  such that 

)),(),((),( yTydxTxdTyTxd +≤α  

for all Xyx ∈, . Then, there exists a unique fixed point Xx ∈0
of  T . 

 

      We now consider chaotic discrete-time systems described by 

)1()),(()1( kxfkx =+  

where nkx ℜ∈)(  is the state of the system at time k , and f  is a mapping from 

nℜ  to itself. We assume that f  is rewritten as follows 

)2(,: hgf +=  

where both g and h are mappings from 
nℜ  to itself and g is a Kannan 

mapping on a closed set 
nℜ∈Ω . It is assumed that a chaotic attractor Α of 

Eq. (1) is in Ω . Many methods for constructing synchronized chaotic systems 

are based upon the decomposition of states of chaotic systems, and it is proved 

by using conditional Lyapunov exponents whether the constructed systems are 
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synchronized. Ushio proposes a method based on the partition of the nonlinear 

mapping, and synchronization of the constructed systems is guaranteed by a 

property of contraction mappings.  

     This paper proposes another method based on partitioning of the nonlinear 

mapping, and synchronization of the constructed systems is guaranteed by a 

property of Kannan mappings. In the following subsections, we study synthesis 

methods for in-phase and anti-phase synchronization of chaotic systems.  

 

2.1  In-phase synchronization 
     That the difference of the states of two systems converges to zero is called 

in-phase synchronization or synchronization. We construct a system described 

by  

)3(,))(())(()1( kxhkwgkw +=+  

where  
nkw ℜ∈)(  is the state of the system, and 

nkx ℜ∈)( is the state of Eq. 

(1). Suppose that initial state )0(x of Eq. (1) is in the basin of the attractor Α ,  

and both states )(kx  and  )(kw of Eq. (1) and (3) are in Ω  for each Ν∈k , 

where Ν denotes the set of all natural numbers. We assume that there exist a 

closed set 
nℜ∈Ω  and a nonnegative constant 

2

1
0 <≤α  such that for any 

Ω∈yx,   the mapping g satisfies 

.))()(()()( ygyxgxygxg −+−≤− α  

We show that Eq. (1) and (3) are in-phase synchronized, so 

))(())(()1()1( kwgkxgkwkx −=+−+  

                       .)))(()())(()(( kwgkwkxgkx −+−≤α  

According to Theorem, we obtain 

.0)()(lim =−
∞→

kwkx
k

 

Thus, in-phase chaotic synchronization of Eqs. (1) and (3) is achieved. Note that 

)0(w  is not necessarily in the basin of  Α . 

     Let us consider the following fully connected network composed of m-

neurons, as given in [20]:  

mixWx
m

j

j

kij

i

k ,...,2,1,)(
1

1 == ∑
=

+ µϕ  

where 
1)1()( −−+= zez µ

µϕ is assumed to be the sigmoid function. Let  

2=m , i.e., consider the case where we have a 2D fully connected neural 

network defined as 
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)4(,)(

)4(,)(
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kkk
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−+=

+

+

µ

µ

ϕ

ϕ
 

                                                                                      

                                                                             

Altering the matrix )( ijwW = of connecting, this map can generate various 

complex dynamical patterns, including deterministic chaos [23]. We start our 

study with a 2D neural network with matrix 










−

−
=

bb

aa
W . 

This simplified neural network is dynamically equivalent to a one-parameter 

family of s-unimodal maps; it is well known that this map will generate chaotic 

via the Feigenbaum scenario. 

 

     We partition the neural network as follows 

,
)(0

0)(
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The mapping g satisfies Kannan mapping for any ℜ∈yx, . Then, we have 

the following new system 

 

)5(.)()()1(

)5(,)()()1(

222212

112111

bkwyywxwkw

akwxywxwkw

kkk

kkk

−+−+=+

−+−+=+

µ

µ

ϕ

ϕ
 

                                          

So in-phase synchronization of System (4) and System (5) is achieved.   

     Remark 1 Because ℜ∈xx ,  is not contraction mapping, the results 

given in [2] are not applicable to show the synchronization of System (4) and 

System (5).  

 

2.2  Anti-phase synchronization 
     That the states of synchronized systems have the same absolute values but 

opposite signs is called anti-phase synchronization. We can say that anti-phase 

synchronization holds if 
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,0)()(lim 21 =+
∞→

kxkx
k

 

where  2,1, =ixi , is the state of the system. Suppose that the state )(kx is 

both in the basin of the chaotic attractor Α and in Ω , and )(kw is in Ω . 

Then,  

))(())(()1()1( kwgkxgkwkx +=+++  

)))(()())(()(( kwgkwkxgkx +++≤α  

According to Theorem, we obtain  

.0)()(lim =+
∞→

kwkx
k

 

Thus, anti-phase chaotic synchronization of )(kx and )(kw is achieved. 

 

3    Chaos Control 

Consider the following chaotic discrete-time systems with an external input  

)6(,)(1 kkk BuZfZ +=+  

where 
n

kZ ℜ∈ and 
l

ku ℜ∈ are the state and input of the system, and B is an 

ln× constant matrix. Eq. (6) without input has a chaotic attractor A . Let 

)( ** ZfZ = be a periodic orbit embedded in A . We consider the following 

input  

)7(,
0

)()( **



 <−−

=
otherwise

zzifzDzD
u kk
k

ε
 

                                 

where D  is a mapping from 
nℜ to 

lℜ , and ε is a sufficiently small positive 

constant. Assume that the mapping BDf +  is a Kannan mapping on a closed 

set 
nℜ∈Ω , and the chaotic attractor A  is within Ω . Suppose that the initial 

state 0z  of Eq.(6) is within Ω ; then, the following behavior kz controlled by 

Eq.(7) is expected 

.))()((

)()(

**

**

1

zBDfzzBDfz

zBDfzBDfzz

kk

kk

+−++−≤

+−+=−+

α
 

 

Since 
2

1
0 <≤α  , according to Theorem, we get  0lim * =−

∞→
zzk

k
, and the 

periodic orbit 
*z can be stabilized in Ω . 
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     As in [20], we consider the neural network defined as follows: 

)8(,)(

)8(,)(
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112111
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kkkk

−++=
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+
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where  ℜ∈kk uu 21 , are control inputs. Then, we have 
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Now, let us consider the following mapping  
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Then, the mapping BDf + is a Kannan mapping. Thus, the following control 

input can stabilize any periodic orbit embedded in a chaotic attractor of (6) 
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where ),( *** yxz = denotes a stabilized periodic state with period 1. To obtain 

the necessary information of an approximate location of the desired periodic 

orbit, the strategy described in Ref. [26] is utilized. We collect a long data string 

of observed )(, 121 zfzz = and so on. If two successive 3z are closed to each 

other, say 100z   and 101z , then there will typically be a period-1 orbit  
*z  

nearby. Having observed a first such close return pair, we then search the 

succeeding data for other close return pairs ),( 1+kk zz restricted to the small 

region of the original close return. Because orbits on a strange attractor are 

ergodic, we will get many such pairs if the data string is long enough. When the 

first close return pair is detected, the first point of the pair is taken as a reference 

point. There are a number of close return pairs detected, which are close to 

reference point, where 1,jz  and 2,jz  are respectively used to denote the first 

point and its successive point of the th collected return pair, Mj ,...,2,1= , 

where M is the maximum number of collected return pairs. The mean value 
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∑
=

+=
M

j

jj zz
M

z
1

2,1,

* )9(,)(
2

1
 

is regarded as an approximate fixed point 
*z . This fixed point can be used to 

define a neighborhood ε≤− *zzi   in which control input is activated.  

     Remark 2 In comparison with the results given in [20], it can be seen that 

using controller ku , proposed in this section, the results of [20] cannot show the 

control of the chaotic discrete neural network. 

 

3    Numerical Example 

Consider the following chaotic neural network 

)10(,)2525(

)10(,)55(

21

11

buyxy

auyxx

kkkk

kkkk

−++−=

−++−=

+

+

µ

µ

ϕ

ϕ
 

 

where 
1)1()( −−+= zez µ

µϕ  is assumed to be the sigmoid function. The 

system has chaotic behavior for 5.5=µ , and the approximate period-3 orbit is 

estimated at 
TT )870103.0,593963.0(,)00000.1,999496.0( and 

T)517291.0,503459.0( , when the condition 005.02 ≤− +ii zz is satisfied 

[20].   

     We  first show the simulation results of chaotically synchronizing  System 

(10) and System (5) without control input. So System (5) becomes as follows 

)11(,)()())(25)(25()1(

)11(,)()())(5)(5()1(

22

11

bkwkykykxkw

akwkxkykxkw

−+−+−=+

−+−+−=+

µ

µ

ϕ

ϕ
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Fig. 1. The error )()( 1 kwkx −  

0 20 40 60 80 100 120 140 160 180 200
-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

k

y
(k
)-
w
2
(k
)

 
 

  Fig. 2.  The error )()( 2 kwky −   

 

The system is simulated with initial conditions 

7.0)0(,9.0)0(,6.0)0(,5.0)0( 21 ==== wwyx , and the differences are 

showed in Figs. (1) and (2). These figures show that system (10) is synchronized 

with system (11). 

     Now, we show the simulation results of chaos control of System (10) using 

controller  proposed in previous section. 
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Behaviors of the state variables x and y and the input controls 1u and 2u are 

shown in Figs. 3-6, when a periodic orbit with perio d=3 is stabilized with 

002.0=ε . 
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Fig. 3. Behavior of x. 
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Fig. 4. Behavior of y. 

 

Figs.3 and 4 show behaviors of the state variables x and y , respectively, with 

initial condition ( )T1.29.1 .  
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Fig. 5. Behavior of input control 1u . 
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Fig. 6. Behaviorf of input control 2u . 

 

Figs.5 and 6 show behaviors of the input controls 1u and 2u , respectively. 

These figures show that System (10) is stabilized by the controller proposed in 

this paper. 
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5    Conclusions 

     In this paper, a new method based on Kannan mappings for chaotic 

synchronization is proposed. Furthermore, a new method based on the mappings 

is presented to stabilize chaotic discrete systems. These methods are applied to 

synchronize and control of chaotic discrete neural networks. Finally, a 

numerical example is given to validate the methods presented.  
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