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Abstract. A chaotic signal is used to excite a cracked beam and wave fractal di-
mension of the resulting time series and power spectrum are analyzed to detect and
characterize the crack. For a single degree of freedom (SDOF) approximation of the
cracked beam, the wave fractal dimension analysis reveals its ability to consistently
and accurately predict crack severity. For a finite element simulation of the cracked
cantilever beam, an analysis of spatio-temporal response using wave fractal dimension
in frequency domain reveals distinctive variation vis-à-vis crack location and severity.
Simulation results are experimentally validated.
Keywords: Chaotic excitation, Chen’s oscillator, Wave fractal dimension.

1 Introduction

Vibration-based methods for crack detection in beam type structures continue
to attract intense attention from researchers. Most often these methods use
external forcing input, e.g., harmonic input, to cause the structure to vibrate.
Typical vibration-based crack detection methods exploit modal analysis tech-
niques to determine changes in beam’s natural frequency [4,11,13] and relate
these changes to the crack severity and in some cases to crack location [17,23].
To quantify the crack depth and to detect crack location, vibration-based crack
detection methods employ a variety of characterizing parameters, such as nat-
ural frequency [11], mode shape [19], mechanical impedance [2], statistical pa-
rameters [22], etc. In recent research, wave fractal dimension, originally intro-
duced by Katz [12] to characterize biological signals, has been used to detect
the severity and location of crack in beam [7] and plate structures [8].

Over the last decade, progress in chaos theory has led several researchers to
consider the use of chaotic excitation in vibration-based crack detection [15,18].
A majority of these efforts necessitate the reconstruction of a chaotic attractor
from the time series data corresponding to the vibration response of the struc-
ture [15,18]. Unfortunately, the reconstruction of a chaotic attractor is often
tedious and may not always yield satisfactory results for crack detection even in

Received: 20 July 2011 / Accepted: 30 December 2011
c© 2012 CMSIM ISSN 2241-0503



242 C. Dubey and V. Kapila

the SDOF approximation case. To detect and characterize cracks, the current
chaos-based crack detection methods use a variety of chaos and statistics-based
parameters, such as correlation dimension [18], Hausdorff distance [18], average
local attractor variance ratio [15], etc. In this paper, we study the use of wave
fractal dimension as a characterizing parameters to predict the severity and
location of a crack in a beam that is made to vibrate using a chaotic input.

2 Beam Excitation Methods

In this section, we consider three methods to excite the cracked beam. We
begin by producing and analyzing the beam response to a non-zero initial
condition which facilitates our understanding of the behavior of wave fractal
dimension as a characterizing parameter for crack detection. We consider a unit
displacement initial condition. Various references [16,22] have already indicated
various reasons for the wide use of harmonic input in vibration-based crack
detection. Thus, we next consider the use of both sub-harmonic (ω < ωn) and
super-harmonic (ω > ωn) inputs to vibrate the cracked beam model and study
its behavior. Finally, we use the chaotic solution of autonomous dissipative
flow type Chen’s attractor [20] as an input excitation force to vibrate the SDOF
model of cracked beam. The Chen’s system in state space form is expressed as

ẏ1 = a1(y2 − y1), ẏ2 = (a3 − a1)y1 − y1y3 + a3y2, ẏ3 = y1y2 − a2y3, (1)

where a1, a2, and a3 are constant parameters. Figure 1 shows the time series y1
and the 2D phase portrait of Chen’s system corresponding to a chaotic solution.
For the indicated values of constants a1, a2, and a3 (see Figure 1), the solution
y1 is expected to be non-periodic. We restricted our attention to Chen’s system
because its solutions y1 and y2 are approximately symmetric about the time
axis, producing the mean of ≈ 0. Furthermore, in a detailed analysis of several
popular chaotic attractors [20], we found that the Chen’s system produced one
of the largest wave fractal dimension (see Figure 2). Moreover, our analysis has
revealed that chaotic attractors possessing these two properties produce large
changes in wave fractal dimension with increasing or decreasing crack depths.
These advantages will become more apparent in the following sections.

3 Wave Fractal Dimension

Waveforms are common patterns that arise frequently in scientific and engi-
neering phenomena. A waveform can be produced by plotting a collection of
ordered (x, y) pairs, where x increases monotonically. The concept of wave
fractal dimension [12] is used to differentiate one waveform from another.

For waveforms, produced using a collection of ordered point pairs (xi, yi),
i = 1, . . . , n, the total length, L, is simply the sum of the distances between

successive points, i.e., L =

n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2. Moreover, the di-

ameter d of a waveform is considered to be the farthest distance between the
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Fig. 1. The chaotic input (Chen’s attractor) with a1 = 35, a2 = 3, a3 = 28, y1(0) =
−10, y2(0) = 0, and y3(0) = 37. (a) Time series of y1 and (b) phase portrait projected
onto the (y1, y2) plane.

starting point (corresponding to n = 1) and some other point (corresponding to
n = i, i = 2, . . . , n), of the waveform, i.e., d = max

i=2,...,n

√
(xi − x1)2 + (yi − y1)2.

Next, by expressing the length of a waveform L and its diameter d in a stan-
dard unit, which is taken to be the average step α of the waveform, the wave
fractal dimension can be expressed as [12]

D =
log(L/α)

log(d/α)
=

log(n)

log(n) + log(d/L)
, (2)

where n = L/α, denotes the number of steps in the waveform. We use (2) to
estimate the wave fractal dimension.

Using (2), wave fractal dimension is calculated for various chaotic attractors
and results are shown in Figure 2 only for one waveform (y1, y2 or y3) of each
attractor having maximum wave fractal dimension. Waveforms are normalized
before calculating wave fractal dimension to maintain parity among various
attractors. It is found that Chen’s attractor has the largest fractal dimension
and this was the reason for using Chen’s attractor in current study.

4 Modeling of a Cracked Beam as a SDOF System with
Force Input

Following [1,18], a cracked beam is modeled as a SDOF switched system which
emulates the opening and closing of the surface crack by switching the effective
stiffness ks = k − ∆k, where k is the stiffness of the beam without crack, ks
is stiffness during stretching and ∆k is stiffness difference. For a SDOF model
with a relatively small crack, the ratio of ∆k to k is equal to the ratio of the
crack depth a to the thickness h of the beam [1,18]. Next, we consider that the
y1 solution of (1) is applied as a force to the mass of the SDOF system. The
equations of motion for this piecewise continuous SDOF system are

Mẍ+ cẋ+ kx = F (t), for x ≥ 0,

Mẍ+ cẋ+ ksx = F (t), for x < 0, (3)
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Fig. 2. Wave fractal dimension of chaotic attractor waveforms. (a) Vanderpol attrac-
tor y2 component; (b) Ueda attractor y2 component; (c) Duffing’s two well attractor
y2 component; (d) Lorenz attractor y2 component; (e) Chen’s attractor y1 compo-
nent; (f) ACT attractor y1 component; (g) Chua’s attractor y3 component; and (h)
Burkeshaw attractor y3 component.

where M is the mass of the cantilever beam, c is the damping coefficient, and x
is the displacement of the beam. The physical parameters of the problem data
used in our simulations are as follows: mass m = 0.18 kg, nominal stiffness
k = 295 N/m, and damping c = 0.03 Ns/m.

5 SDOF Results

For the three excitation methods of Section 2, the system responses for the
SDOF model of section 4 are recorded and analyzed to carefully examine the
influence of different excitation methods and signal characteristics on the be-
havior of wave fractal dimension (2). Moreover, we consider alternative ways
to efficiently compute the wave fractal dimension.

5.1 SDOF results of wave fractal dimension for non-zero initial
condition

We begin by simulating the SDOF system of (3) with a unit displacement ini-
tial condition and F (t) = 0, for t ≥ 0. The simulation is performed for various
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values of small crack depths and the resulting time series data is provided in
Figure 3. In each case, the vibration starts with unit displacement and even-
tually settles to zero due to damping. Even though all the curves look quite
similar, the damped vibration frequency decreases with increasing crack depth
[6]. Next, for each time series, we compute the corresponding wave fractal
dimension and plot normalized crack depth versus the wave fractal dimension
in Figure 4, which shows the wave fractal dimension decreases with increasing
crack depth. As indicated above, increasing crack depth leads to lowering of
the waveform frequency, thereby reducing the wave fractal dimension. Further-
more, note that the trend shown in Figure 4 is quite monotonic and can be
used to detect small cracks. Unfortunately, the rate of change of wave fractal
dimension vis-à-vis crack depth is very small.
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Fig. 3. Time response of the SDOF system to non-zero initial displacement

5.2 SDOF results of wave fractal dimension with harmonic input

For a SDOF model (3) emulating a cracked beam, the natural frequency of the
resulting model depends on the crack depth and will not be known prior to
crack characterization. Thus, we consider the use of sub-harmonic (ω < ωn)
and super-harmonic (ω > ωn) force inputs to vibrate the SDOF model for
various values of crack depths. Figure 5 provides the resulting time series
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Fig. 4. Change of the wave fractal dimension with normalized crack depth for unit
initial displacement

plots for the sub-harmonic input case with various normalized crack depths.
Following the initial transient response, in each plot, a steady state sinusoidal
response is observed. Moreover, these responses reveal that the amplitude of
the output waveform increases with increasing crack depth.
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Fig. 5. Time response of the SDOF system to sub-harmonic (ω < ωn) input

Next, for each time series of Figure 5, we compute the corresponding wave
fractal dimension and plot normalized crack depth versus the wave fractal di-
mension in Figure 6(a), which shows that the wave fractal dimension mono-
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tonically increases with increasing crack depth. Note that, as indicated above,
increasing crack depth leads to increasing amplitude of the waveform, leading
to an increase in the wave fractal dimension. Next, we apply a super-harmonic
(ω > ωn) forcing input to vibrate the SDOF model for various values of crack
depths. From the resulting time series, we compute the corresponding wave
fractal dimension and plot normalized crack depth versus the wave fractal di-
mension in Figure 6(b), which shows that the wave fractal dimension mono-
tonically decreases with increasing crack depth. The results of this subsection
indicate that in order to accurately predict the crack depth, we need to know
the approximate natural frequency of the cracked system so that the correct
graph (Figure 6(a) versus 6(b)) can be used. This is not very satisfactory since,
as noted above, the natural frequency of the cracked beam depends on the crack
depth and is not known a priori.
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Fig. 6. Change of the wave fractal dimension with normalized crack depth for (a)
sub-harmonic (ω < ωn) and (b) super-harmonic (ω > ωn) input

5.3 SDOF results of wave fractal dimension with chaotic input

We now consider the application of the chaotic forcing input of section 2 to
vibrate the SDOF model for various values of crack depths. Figure 7 provides
the resulting time series plots for the chaotic input with various normalized
crack depths. Since the resulting waveforms are non-periodic, no obvious trends
can be discerned from these plots. Next, for each time series of Figure 7, we
compute the corresponding wave fractal dimension and plot normalized crack
depth versus the wave fractal dimension in Figure 8, which shows that the
wave fractal dimension monotonically increases with increasing crack depth.
Note that, in contrast to the harmonic forcing input case, when using a chaotic
excitation we do not need a priori knowledge of the natural frequency of the
cracked beam. This feature is facilitated by the fact that the chaotic excitation
signal has a broad frequency content.

Since wave fractal dimension is a characteristic of the waveform only, we
consider the wave fractal dimension analysis of the time series of Figure 7 in
frequency domain. To do so, we use the Fast Fourier Transform (FFT) [10]
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Fig. 7. Time response of the SDOF system with chaotic input
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Fig. 8. Change of the wave fractal dimension with normalized crack depth for chaotic
input

technique to convert the time domain data of Figure 7 to frequency domain.
The resulting frequency domain data in Figure 9 provides the power spectrum
of the response of the SDOF cracked beam. Whereas the time response plots
of Figure 7 do not reveal any trend, the power spectrum illustrates that the
portion of FFT in the vicinity of beam’s natural frequency ωn experiences
significant changes. Thus, we now concentrate in the neighborhood of ωn as
our window for computing the wave fractal dimension. Using this technique, in
Figure 10(a), we plot normalized crack depth versus the wave fractal dimension
for the windowed waveforms of Figure 9. From Figure 10(a), we observe that
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the wave fractal dimension monotonically increases with increasing crack depth
and this curve exhibits a significant rate of change. Thus, in the following
analysis, we use the wave fractal dimension of power spectrum as a natural
choice for crack detection and crack characterization.

Finally, we also plot wave fractal dimension versus normalized crack depth
plots for power spectrum constructed from the FFT of non-zero initial condition
response and the harmonic input response corresponding to Figures 3 and 5,
respectively. The resulting plots are provided in Figures 10(b) and 10(c) and
demonstrate that the frequency domain wave fractal dimension analysis is an
effective way to characterize crack depth in a SDOF system.
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Fig. 9. Power spectrum of the time response of SDOF system with chaotic input

6 Continuous Model Case

We now extend the results of section 5 to the continuous model case. To do so,
as in [19,21], we consider a continuous model of the dynamical behavior of the
beam with a surface crack in two parts. Specifically, when the beam moves away
from the neutral position so that the crack remains closed, the beam behaves
as a typical continuous beam [6,19,21]. However, when the beam moves in
the other direction from the neutral position, causing the crack to open, the
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Fig. 10. Frequency domain change of the wave fractal dimension with normalized
crack depth for (a) chaotic input, (b) unit initial displacement, and (c) harmonic
input

resulting dynamics require the modeling of crack with a rotational spring whose
stiffness is related to the crack depth [2,6,19,21].

Next, we used the ANSYS software [14] to simulate the dynamics of a
cracked beam under external excitation. We modeled the beam as a 2-D elastic
object using a beam3 element [14] which has tension, compression, and bending
capabilities. The crack is simulated by inserting a torsional spring at the lo-
cation of the crack and using the mathematical model described in [2,6,19,21].
The torsional spring is modeled using a combin14 element [14] which is a spring-
damper element used in 1-D, 2-D, and 3-D applications. In our finite element
(FE) model, we used the combin14 element as a pure spring with 1-D (i.e.,
torsional) stiffness since the model of [2,6,19,21] does not consider damping.
The physical characteristics of the beam used in our FE model are as follows:
material–Plexiglass, length–500 mm, width–50 mm, thickness–6 mm, modulus
of elasticity–3300 MPa, density–1190 kg/m3, and Poisson’s ratio–0.35. This FE
model was validated [6] by comparing the natural frequencies resulting from
the FE simulations versus the natural frequencies computed in Matlab [5] for
the dynamic model of [6,19,21].

Next, we apply force input to the FE model using the time series y1 of (1).
In particular, using MATLAB, we simulate (1) and save 15, 000 time steps of
y1 time series, which is applied as force input at 40 mm from the fixed end
in ANSYS. The FE simulation is used to produce and record spatio-temporal
responses for each node (corresponding to discretized locations along the beam
span). The resulting data is imported in MATLAB for a detailed wave fractal
dimension analysis.

To detect the presence of a crack in the beam, we only consider the time
series data corresponding to the beam tip displacement. The time series for
tip displacement is converted to the frequency domain using the FFT. The
resulting power spectrum plot is provided in Figure 11 for various sizes of
cracks located at L1 = 0.2L. From Figure 11, we observe significant changes
around 6.4Hz which corresponds to the first fundamental frequency of the beam.
These changes in the power spectrum are due to changes in crack depth at
L1 = 0.2L. To characterize the changes in crack depth, we now compute and
plot the wave fractal dimension for cracks at various location along the beam.
For example, Figure 12 provides wave fractal dimension curves for a crack
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located at L1 = 0.2L and, alternatively, at L1 = 0.4L. We term these curves
as uniform crack location curves. We observe that a beam without a crack
yields a wave fractal dimension of 1.1205, and wave fractal dimension above
this nominal value indicates presence of a crack in the beam. Unfortunately,
this method can not provide a concrete answer about the severity and location
of the crack. However, this method can be used to indicate a combination of
size and location of crack or a region of the beam where crack may be present.
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Fig. 11. Power spectrum of beam tip time response for a crack located at L1 = 0.2L
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Fig. 12. Wave fractal dimension versus normalized crack depth–uniform crack loca-
tion curves for L1 = 0.2L and L1 = 0.4L

Next, to predict the severity and approximate location of the crack on the
beam surface, we record the time series data of the beam response along its
span for chaotic forcing input. Using the FFT, the time series data is converted
to frequency domain. The resulting power spectrum plot is analyzed to identify
a suitable window for computing the wave fractal dimension. Throughout this
analysis, the frequency window used for computing the wave fractal dimension



252 C. Dubey and V. Kapila

is kept fixed for all crack depths considered. Figure 13(a) plots wave fractal
dimension against normalized beam length for cracks of various severity located
at L1 = 0.2L. These uniform crack depth curves yield the same wave fractal
dimension till the crack location and their slopes change abruptly at the loca-
tion of crack. In fact, past the crack location, the uniform crack depth curves
exhibits a larger slope for a larger crack depth. Figure 13(b) shows similar be-
havior for crack location, L1 = 0.4L. The abrupt split in uniform crack depth
curves at crack location and their increasing slope with increasing crack depth
can be used to establish both the severity and location of crack.
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Fig. 13. Wave fractal dimension versus normalized beam length–uniform crack depth
curves for (a) L1 = 0.2L and (b) L1 = 0.4L

7 Experimental Verification

A schematic of the experimental setup used is given in Figure 14. An aluminum
base holds the shaker (Brüel & Kjær Type 4810). To produce a base excitation,
a test specimen is clamped on shaker. An accelerometer (Omega ACC 103) is
mounted at the tip of the specimen using mounting bee wax. Our software en-
vironment consists of Matlab, Simulink, and Real Time Workshop in which the
Chen’s chaotic oscillator is propagated to obtain the time series corresponding
to the y1 signals of (1). Next, an analog output block in the Simulink program
outputs the y1 signal to a digital to analog converter of Quanser’s Q4 data ac-
quisition and control board which in turn is fed to a 12 volt amplifier (Kenwood
KAC-8202) to drive the shaker. The accelerometer output is processed by an
amplifier (Omega ACC PSI) and interfaced to an analog to digital converter
of the Q4 board for feedback to the Simulink program. Properties of the spec-
imen used in our experiments are same as in Section 6. To emulate a fine hair
crack, we used a 0.1 mm saw to introduce cracks of several different desired
depths. As noted in [3], sawed and cracked beams yield different natural fre-
quencies wherein the frequency difference is dependent on the width of the cut.
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Thus, it follows that the frequency characteristics of sawed and cracked beams
may differ significantly for larger crack width and render the natural frequency
based crack detection methods ineffective. The results of this effort are not
significantly affected since, instead of relying on changes in natural frequency,
our crack detection approach relies on measuring and comparing wave fractal
dimension of chaotically excited vibration response. For specimen of different
crack depth, all located at L1 = 0.2L = 100 mm from fixed end, the accelerom-
eter measurement is recorded and used to produce the output response time
series, which is used to perform our analysis. A total of six specimens were
prepared with crack depth varying from 0% to 50% of the thickness. In all
the specimen, saw crack was introduced on the top surface to match with the
simulation condition.

Fig. 14. Experimental setup

The time series data obtained from the accelerometer suffered from general
sensor errors (dc offset and ramp bias), causing the raw time series data to
be unusable for further analysis. We used the Wavelet transformation toolbox
[9] of MATLAB to filter the raw time series data and remove the errors. This
filtering technique uses a moving average of the waveform to shift its mean to 0
[6]. Using this technique with Chen’s input to the beam structure with various
crack depth, we obtain Figure 15 that shows the corrected time series. Next,
we use the time series data of Figure 15 to compute the wave fractal dimension
and plot the result against the crack depth. Following the trends observed in
our numerical study, in Figure 16(a), wave fractal dimension versus crack depth
plot shows an increasing trend.

Finally, we perform FFT on the time series data of Figure 15 to obtain the
power spectrum plots (see [6]) for various crack depths. Next, we compute the
wave fractal dimension of the frequency domain data using a window from 0 to
20 Hz. Figure 16(b) shows that the wave fractal dimension of frequency domain
data exhibits an increasing trend against increasing crack depth, matching the
trend observed in our numerical study. Although the plots obtained from the
experimental data are not as smooth as the ones resulting from numerical simu-
lation, this may be the result of inaccuracies resulting from sample preparation
or a variety of experimental errors [6].
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Fig. 15. Filtered time series for different crack depths with Chen’s input
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Fig. 16. Wave fractal dimension for different crack depths at L1 = 0.2L from (a)
time series and (b) frequency domain data

8 Conclusion

In this paper, to detect and characterize a crack in a beam, we considered
a SDOF and a FE model of the beam excited by a chaotic force input. We
showed that for the SDOF model, crack severity can be easily and consistently
predicted by using wave fractal dimension of power spectrum of time series
data. Moreover, for the FE model, we showed that wave fractal dimension
exhibits a trend that can be used to predict crack location and crack depth.
Finally, the simulation results were validated experimentally.
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