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Abstract: The photosensitive CDIMA reaction was investigated using the Lengyel 

Epstein model modified to include the effect of external illumination. Different spatial 

patterns are exhibited under constant values of light, ranging from Turing Spots to 

Stripes for the minimum and maximum values of illumination, respectively. Moreover, 

by neglecting the diffusion, the system displays oscillations with a characteristic period 

that also depends on the illumination value. When illumination is set to periodically 

oscillate three different behaviors are observed. Namely, a regime exhibiting the period 

of the external forcing; another where there is a resonance between several periods of 

oscillations and a broad regime where the system demonstrates a chaotic-like behavior. 
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1    Introduction 

The reaction between chlorine dioxide, iodine and malonic acid (CDIMA 

reaction) is one of the most thoroughly studied oscillatory chemical systems [1, 

2] both experimentally and numerically. This reaction constitutes a good 

prototype for studying complex dynamics, such as the symmetry-breaking, 

reaction diffusion Turing patterns [3]. Moreover, experiments performed by 

Epstein Group reported that CDIMA reaction presents a high sensitivity to 

visible light [4]. The photosensitivity opens the possibility to control the 

different patterns by using either temporal illumination (constant or periodical), 

spatial or spatiotemporal forcing [5, 6]. Specifically, the light forcing is able to 

induce a transition between patterns [7], suppress the structures [8] or introduce 

new localized patterns [9].  
 

2    The Model and Simulations 

We employed the Lengyel-Epstein model [10, 11] because it approaches to the 

true kinetics of the experiments and allows analytical calculations in good 

agreement, both quantitative and qualitative, with the experiments. This model 

consists of two coupled reaction-diffusion equations, once modified to take into 

account the illumination, as: 
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Here u and v are the dimensionless concentration for iodide (activator) and 

ClO2
-
 ions (inhibitor), respectively; a, c and σ are dimensionless parameters of 

the chemical system; d is proportional to the ratio of the diffusion coefficients of 

the main species (d = Dinhibitor/Dactivator). The parameter Φ plays the role of the 

illumination intensity. In this work the light sinusoidally varies with time 

according to:  
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The relevance of the above light forcing lies in the always positive value of Φ 

which can be tuned through a characteristic period of forcing (ω = 2π/T).  

Whether we only considered the temporal evolution and without any spatial 

consideration, i.e. a OD-system, the model equations (1)-(2) are solved 

numerically by the Runge-Kutta method with a time step 0.001 time units (t. u.). 

In presence of diffusion the simulations were performed by a Dufort-Frankel 

model in addition to Dirichlet and Newman conditions: 
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In our simulations, for initial conditions we chose small perturbation (5%) of 

random values close to steady state: 
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The steady state go through a Hopf instability if  
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evolving into a homogeneous limit cycle characterized by a typical frequency.  

 

The homogeneous steady state of the system may also undergo Turing 

instability when: 
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where 

 ( )( )265 φα −= ad ,      (10) 

( )( ) ( )( )( ) ( )32
5250055351025 φφφφβ −+−−−−= adadaad  (11) 

and  ( ) ( )( ) ( )524
51005535 φφφγ −−−−−= adada  (12) 

The point where these two different instabilities coincide is the so-called 

codimension-two Turing-Hopf point (CTHP). By plotting in a parameter space 

the two parameters used to determine the different instabilities (C and Φ), we 

obtained that our range of study is located in a Subcritical Turing domain (see 

Figure 1). The relevance of such regime reside in the oscillations displayed 

when we study the system without spatial diffusion and the Turing patterns 

observed taking into account the diffusion.  

 

 
Fig. 1. C vs Φ phase portrait in a model of the CDIMA reaction-diffusion 

system with constant illumination. Fixed parameters in our simulations: a= 36, 

c=1, σ=20 and d=1.027. The dashed line corresponds to the range of parameters 

studied once that we introduce the modulated light forcing. Different stationary 

Turing patterns where obtained in our numerical simulations, □ Stripes, x 

mixture of stripes and spots and ○ spots by at constant values of the 

illumination.  

 

It is important to note the different Turing patterns exhibited by Lengyel-Epstein 

model for the different values of the light as we shown in Figure 1. Thus, as we 

increase the illumination parameter control (Φ), the system evolves from a pure 

Stripe configuration to a pure hexagonal Spots regime going trough a mixture of 

both of them (see insets in Figure 1). We want to recall that each of these 

patterns was obtained for a constant value of illumination. The purpose of this 
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work is the analysis of the dynamics obtained when we modulated the light in a 

sinusoidal way in between the Stripe and Spots configuration. 

By using a linear stability analysis of the model (1) - (2), we obtain the related 

dispersion curves as a function of the wavenumber (see Figure 2). We observed 

that although both instabilities (Turing and Hopf) coexist in our range of 

parameters, the predominant mode differs according to the value of Φ. For 

lower values of the illumination, the dispersion relationship presents a 

predominant Turing mode slightly influenced by Hopf. However, the maximum 

value of illumination, Φmax, demonstrates a clear resonance between the Turing 

and Hopf instability, where the last one became predominant. Increasing the 

parameter of control Φ in the relation dispersion makes the Turing regime to 

expand and shifts the most probable to higher values.  

 

 
Fig. 2. Schematic dispersion relations displaying the interaction between the 

Turing and Hopf instabilities. The dispersion curves were analyzed for two 

different values of the illumination: Dash line (Φmax,), solid line (Φmin,) . 

 

We focused our study analysis in the two-variable model (1) – (2) in the absence 

of diffusion, i.e. we analyzed the temporal evolution of the 0D system.  

Thereby, the Lengyel-Epstein with a constant illumination presents an 

oscillatory solution with a characteristic period (figure 3a). By changing the 

illumination parameter in between the minimum (Φmin,) and maximum (Φmax,) 

values, the period of oscillation increases in the same way that Φ does (Figure 

3b).  

 

 
a)  

 
b)  

Fig. 3. Lengyel-Epstein model in presence of constant illumination.   a) 

Oscillations profile for two forcing values  (blue line corresponds to Φmin,=1. 

Red line corresponds to Φmax=4.5). b) Dependence of the oscillation period with 

the illumination parameter 
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The modulation periodic of the external light, introduces a new parameter, the 

period of the forcing, and depending on its value the dynamics of the system 

show different responses. The amplitude of the oscillatory behavior, for both the 

activator and inhibitor dimensionless species, was considered as the key 

parameter in order to analyze the results. Moreover, we want to note that all the 

simulations were carried out for a narrow range of the period of the forcing (1> 

T > 1.06). This fact enhances the susceptibility of the Lengyel-Epstein model to 

the illumination parameter. By plotting the amplitude of the activator for all the 

different values of the forcing, we differentiated three different regimes as we 

show in figure 4 

 

 
Fig. 4. Bifurcation diagram showing the values of activator’s amplitude as the 

response of the period of illumination.  

 

Region I. In the range of period of forcing 1.05<T<106, the system 

demonstrates an oscillatory dynamic. The peculiarity of such sinusoidal 

behavior lies in the fact that the LE model exhibits a period of oscillation equal 

to the period of the forcing. All the oscillations of the system are performed with 

the same amplitude (In the example displayed in figure 5, the amplitude given 

by the limit cycle of figure 5.a). Fast Fourier transform was used to verify the 

presence of an unique period of oscillation (Figure 5b). 

 

Region II. By forcing the system with a period of illumination within this 

regime, the limit cycle described by the system is splitted into three amplitudes 

of oscillation, as can be seen in the example of figure 5c. Moreover, the LE 

model does not present oscillations with the frequency of the forcing, but rather, 

it exhibits periods close to this value (see Figure 5d). 

 

Region III. For a broad range of forcing periods, the system oscillates showing 

a chaotic behavior in the oscillation amplitudes, as we show in the path traced in 
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the phase space (see Figure 5e). The analysis of the period of oscillations 

followed by FFT also corroborates such results (Figure 5f). 

 

 

 
a)  b)  

 
c) d)  

 
e)  f) 

Figure 5. System responses for different frequencies of forcing. Left panels: 

Phase space exhibiting the associated limit cycles. Right panels: Fast Fourier 

Transform of the response signal showing the most significant peaks.  

Frequency of forcing: 1.05 (cases a, b), 1.009 (cases c, d) and 1.035 1/t.u. (cases 

e, f) 

 
3    Conclusions 

The Lengyel-Epstein model was modified to include the photosensitivity as an 

external forcing. Our work deals with a time-periodic (always positive and non-

zero) illumination restricted between a maximum and minimum that displays a 

sort of subcritical Turing instability. Moreover, the wealth of the system allow 

us to observe oscillations (which depend linearly on the forcing), when we 

analyze the system without spatial considerations, and also Turing patterns 



Chaotic Modeling and Simulation (CMSIM) 1: 45-51, 2012 51 

(going from Stripes to Spots as we increase the illumination parameter), whether 

the diffusion takes place.  

Although our analysis concerns to a narrow range of forcing periods, we obtain 

three regimes with different dynamics. For higher periods, the system oscillates 

with the period induced by the forcing. However, for higher values of the 

illumination period, the system splits into different periods. Under intermediate 

periods of oscillations, the Lengyel-Epstein presents a broad range of 

parameters with a chaotic-like behavior. 

These results enhance the high sensitivity of LE model under applied forcing 

and also open the possibility to perform a more carefully simulations under a 

broad range of illumination frequencies, where these kind of resonant dynamics 

are expected. Furthermore, these results suggest that applied waveform forcing 

can induce exciting spatiotemporal complex patterns once we take into account 

the spatial diffusion. 

 

References 

1. V. Castest and E. Dulos and J. Boissonade and P. De Kepper, Phys. Rev. Lett., 64, 

2953, 1990 

2. Q. Ouyang and H. Swinney, Nature, 352, 610-612, 1991 

3. A. M. Turing, Philos. Trans. R. Soc. London, Ser. B, 237, 37, 1952 

4. A. P. Muñuzuri and M. Dolnik and A. M. Zhabotinsky and I. R. Epstein, J. Am. Chem. 

Soc., 121,8065-8069,1999 

5.  M. Dolnik and A. M. Zhabotinsky and I. R. Epstein, Phys. Rev. E, 63, 026101, 2001 

6. C. M. Topaz and A. J. Catllá, Phys. Rev. E, 81,026213, 2010  

7. D. G. Míquez, A. M. Nicola and A. P. Muñuzuri and J. Casademunt and F. Sagués and 

L. Kramer, Phys. Rev. Lett., 93,048303, 2004 

8. A. K. Horváth and M. DOlnik and A. P. Muñuzuri and A. M. Zhabotinsky and I. R. 

Epstein, Phys. Rev. Lett.,83, 2950, 1999 

9.  D. G. Míguez and V. Pérez-Villar and A. P. Muñuzuri, Phys. Rev. E, 71,066217, 2005  

10. I. Lengyel and I. R. Epstein, Science, 251, 650, 1991 

11. I. Lengyel and G. Rábai and I. R. Epstein, J. Am. Chem. Soc.,112, 9104, 1990 

 


