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Abstract: As the understanding of the chaotic state increases, it becomes clearer that the 

definition and the theoretical elaboration of the chaos is not a simple hypothesis. In 

addition, it is a commonplace fact that the mathematical representation of the chaos 

theory on the whole is very difficult to be given. This means that there is not any 

mathematical equation capable of describing and solving a nonlinear and chaotic 

problem. So, as every case is unique, our work has to contribute to the chaotic topic both 

mathematically and experimentally. Magnetized argon plasma is produced into a metallic 

cylinder. A coaxial antenna is used for the r-f energy importation and the plasma 

maintenance consequently. This device has a complete cylindrical symmetry and the 

mathematic elaboration in the cylindrical system is carried out. An attempt to show a 

repeating relation for ion velocities of magnitude of every order is presented as our new 

work. In addition, it is well known that the perturbation theory can be used to extend the 

linear theory of plasma waves into the nonlinear regime and, thus, give an explanation of 

many nonlinear phenomena. This nonlinear perturbation theory of small amplitude 

plasma waves and their interactions is well developed; on the contrary, the perturbation 

theory of large-amplitude plasma waves is still being developed. In the present paper, a 

generalization of the perturbation theory is attempted with the division of the perturbed 

magnitude and the use of the repeating estimation. Computational results and 

experimental findings are in a very satisfactory accordance.   

Keywords: Chaos theory, Nonlinear problem, Cylindrical system, r-f plasma production, 

Repeating relation, Perturbation theory, Loop on the repeating relation.  

 
1. Introduction 

The stability and instability of the plasmatic state was an old problem for 

researchers during the last decades. Especially, in the early 60’s many plasma 
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instabilities have been observed taking wavy forms into the plasma [1-4]. These 

waves absorb the plasma energy, then the plasma temperature is consequently 

reduced and the removal of the thermonuclear fusion conditions is resulted. So, 

the wavy instabilities are considered to be a serious obstacle to the nuclear 

fusion process and their study has been carried out constantly and in detail 

during the last decades [5,6]. Many special books constitute the Plasma Physics 

Literacy [7-10],  list and study  all the waves from the low frequency region [1- 

6] to the high frequency one [11]. In the Plasma Laboratory of the Center 

“Demokritos” an adequate amount of experience has been gained, especially on 

the low frequency electrostatic waves [12-14] and their effect on the plasma 

conductivity [13]. The chaotic behavior of the plasma waves has been studied as 

well [15,16]. It is well known that the plasma can easily pass from a steady state 

into a chaotic one, which was repeatedly published in our previous papers 

[17,18]. In the present work an attempt takes place to compare the experimental 

data with the computation results, and so, our theory may be confirmed.  A 

mathematic relation, which connects the different order velocities, was found 

and may be used as a repeating relation showing the chaotic behavior of the 

plasma. The relation is valid under the condition that the perturbed qualities are 

small in comparison with the unperturbed one [8-10]. In the present work a 

calculative trial using the relation as a repeating one may bring it into the 

function conditions and the perturbed theory can be therefore extended. 

Although the experimental results are in a satisfactory agreement with the 

calculation, the subject remains open as a chaotic state one and requires further 

study. In the next research of ours, the influence of the initial conditions on the 

computational results is planed to be studied.   

A brief description of the experimental devices is given in Sec.2, since the 

experimental results are presented in the following Sec.3. In Sec. 4 a full 

mathematical elaboration and the computational results are curried out. The 

confirmation between theory and experiment and conclusions are included in 

Sec. 5. A more detailed mathematical elaboration is provided in the Appendix at 

the end of the paper. 

2. Description of the Experimental Set-Up 

     It is well known that the predominant direction of the external magnetic field 

B
r

in the Q-machine is well matched with the cylindrical geometry of the device, 

when the cylinder axis and magnetic field coincide.  As our experience on the 

magnetized argon plasma is concentrated on full cylindrical symmetry, the same 

geometry is used at the present study as well, since the low frequencies of 

plasma waves are persistent [1-4, 12-14]. A cylindrical cavity made of steady 
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steel is located with its’ axis along the external magnetic field B . The cavity is 

cm60 long with cm6  internal diameter and, in the center of the first disk-like 

base, the cm25  rf power antenna is mounted; in the other disk-like base a  

cm25  external driving wave antenna is mounted as well, which enables us to 

affect and control the plasma waves. Electrostatic Langmuir probes were fixed 

to move radially, azimouthally and axially with the ability to detect the plasma 

waves that appear and measure their physical quantities (wave frequency, wave 

amplitude, plasma temperature, plasma density, plasma potential e.t.c.). 

Furthermore, a disk-probe was fixed to move radially and around its’ axis, 

which allows, apart from the above quantities, the measuring of the azimouthal 

electron drift current.  In Fig.1 (a) the plasma column cut is shown, whereas an 

extensive drawing of the cavity’s position into the magnetic field is presented in 

Fig.1 (b). 

 

Fig.1 (a), the plasma column is shown.  Fig.1 (b), the cavity’s placing into the 

magnetic field is presented (ground plan). 

The argon entrance, its’ outlet to the pump and a suitable window are placed on 

the curved surface of the cylinder, as they are represented at the Fig.1 (b). 

3. Experimental  Data 

  The existence of the electrical waves into the argon plasma is confirmed once 

more. These low frequency waves are   divided into three frequency regions 

with a quasi-same behavior in many instances. An extensive study of these 

waves was carried out at the Plasma Laboratory of NCSR ‘’Demokritos’’ 

previously, and two of them were absolutely identified [12, 14]. A stable 

dependence of the gas pressure on the waves has been presented and measured 
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again. This influence consists of the simultaneous decrease of the waves’ 

amplitude and frequency as the gas pressure increases.  Figures 2 and 3 give a 

middle frequency region wave indicatively with its’ spectrum of frequencies 

where the upper harmonics appear; the first with a high value of the gas pressure 

and the second with a low one.                                          

The plasma is lit into an wide space of the external plasma  parameters (gas 

pressure p , magnetic field B  and rf field absorbed  power P )  and results  in  

a wide region of  plasma quantities as well; these quantities include the plasma 

temperature T , the plasma density n , the plasma potential  Φ , and all the 

wave parameters.  Table 1 shows some typical values of the plasma parameters. 

 Fig. 2. A typical wave spectrum in the middle frequency region with high gas 

pressure.

 

Fig. 3. A typical wave spectrum in the middle frequency region again with low 

gas pressure. 
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                          Table 1 The plasma parameters ranging values 
Parameters Minimum value Maximum value 

Argon pressure p  Pa001.0  Pa1.0  

Argon number density, gn  315102 −× m  
317102 −× m  

Magnetic field intensity, B  mT10  mT200  
Microwaves’ power, P  

Frequency of the rf power (standard 

value)                                 

Watt20  

GHz45.2  

Watt120  

Electron density, 0n  315102 −× m  
315106.4 −× m  

Electron temperature, eT  eV5.1  eV10  

Ion temperature, iT  eV025.0  eV048.0  

Ionization rate  %1.0  %90  

Electron drift velocity, eu  s
m4101×

 s
m4107.1 ×

 
Electron-neutral collision frequency, eν  17102.1 −× s  

19103 −× s  

 
The experimental part of the present paper consists of the following steps: 

 

i) By using the radial moving probe, the plasma potential )(rΦ  is measured along 

the cylinder radius and then, from the relation 
r∆

∆Φ
−=ε  the plasma electric 

field ε  is calculated. Figure 4 is shows the radial potential and radial electric 

field along the cylinder radius.  

 
 

Fig.4 shows the plasma potential )(rΦ and the electric field ε along the cylinder 

radius. 
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It must be noted that the electric field ε remains nearly constant in the middle of 

the radius, where the wave rises and its’ amplitude constantly increases [6, 12-

14]. The measurement has been done by 0BB p .   
 

ii) The perturbed electric field E must be measured, consequently. This 

measurement may be a result of the wave amplitude as it appears along the 

cylinder radius. Figure 5 is shows the wave amplitude (in Volts) and the 

perturbed field E  correspondingly. The measurement was repeated for values 

of the magnetic field B , under and above the upper cyclotron resonance resB . 

 
 

Fig. 5 shows the wave amplitude and the perturbed  electric field E along the 

cylinder radius. 

 

iii) The measurement of the azimouthal electron drift velocity eu is the next 

step. This is obtained by using the disk probe as it moves around its’ 

axis. Figure 6 indicates the method of the measurement of the 

azimouthal electron current θI , which requires two simple movements: 

the orientation of the probe surface perpendicularly to the electron drift 

course, and after, in the opposite direction of the electrons’ motion. 

 
Fig. 6, the electron drift current measurement 
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 The next relations thIII += θ1   and thIII +−= θ2  are valid and result in 

the relation below, 

2

21 II
I

−
=θ  

Taking into consideration that the relation Α= ... ee uneIθ is valid (with Α  

the probe surface area), the azimouthal electron drift can be found.  

Measurements and estimations are listed in Table 2, since the electron drift 

velocity eu and the perturbed velocity υ are presented in Fig. 7, as well. 

 

 Table 2  The azimouthal electron drift current and the drift velocity along a 

cylinder radius 
Radius 

r  
drift 

current eI  

plasma density 

en  

drift velocity  

eu  ε
E  

perturbed 

velocity θυ  

( cm ) ( Aµ ) (
31510 −mx ) (

s
mx 310 ) 

 
(

s
m ) 

3.0  20  0.6  43.4  1.0−  443−  

6.0  26  2.6  57.5  05.0−  278−  

9.0  30  5.6  17.6  067.0−  413−  

2.1  37  0.7  02.7  04.0  281  

5.1  42 8.6  20.8  037.0  303  

8.1  46  2.6  85.9  25.0  2462  

1.2  35  9.5  92.7  1.0  792  

4.2  25 6.5  93.5  1.0  593  

7.2  16  5.5 86.3    

 

 

iv) The perturbed velocity θυ is impossible to be found directly by an 

experimental measuring, but it can be estimated from the 

relation θθ ε
υ u

E
= , as the quantities E,ε and θu have been measured above. 

The results for theυ  are given again in Table 2.  
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Fig.7. The drift velocity eu and the perturbed velocity υ are presented 

 

 
4.  Mathematical  Elaboration - Computational Results 

                  Perturbed velocities’ study 
 

       In the Appendix it is proved that the drift and perturbed velocities are 

related to the electrical fields with the Eq. (A. 9),              

                                          rr u
E

ε
υ =    and   θθ ε

υ u
E

=         (A. 9)  

A. When the perturbed electric field E is very small, then the relations 

rr upυ and θθυ up   are valid. 

B. If the relation u≈υ is valid, the electric fields must have the same behavior 

as ε≈E . This means that the wave amplitude undergoes some big changes 

along the cylinder radius. 

With the replacement of the quantityΠ , the Eqs ( A. 7)  are written: 

 
[ ]22

2

)(
.

νωω

ω
υθ

+−+
=

kujB

E

c

c      and   
[ ]
[ ]22 )(

)(
.

νωω

ννω
υ

+−+

+−
==

kuj

kuj

B

E

c

c
r          

(1) 

The azimouthal perturbed velocity θυ is of the most interest: by taking 

)(2)( 222 ωνων −+−−=Π kujku  and limiting the real part only, the first of 

Eqs (1) is rewritten as following, 
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222

2

)(
.

ωνω

ω
υ

−−+
=

kuB

E

c

c       (2) 

with υυθ =  for simplicity; this may be used as the repeating relation. 

It must be reminded that the Eq.(A. 9)  was produced with the presupposition 

that the relation uppυ is valid. This consists a necessary condition for the 

linearization of Eq. (A. 1) (perturbation theory).  

 Now, if we seek a solution for u≈υ , approximately, by separating the 

perturbed velocity υ into small parts iυυυυ ,....,, 321  with ,....1000,100,10=i  

and every part υυ ppi , the perturbation theory condition is satisfied. 

 Taking 0uu =  and 
10

1

υ
υυ p= , the Eq. (2)  is written, 

                                            
2

0
22

2

1
)(

.
ωνω

ω
υ

−−+
=

kuB

E

c

c           (3) 

  With the addition    101 υ+= uu , the above equation gives the term 2υ , 

                                             
2

1
22

2

2
)(

.
ωνω

ω
υ

−−+
=

kuB

E

c

c  

  If it is taken 212 υ+= uu  ,  the Eq. (2) gives the term 3υ , 

  And so on, with 11 ++ += iii uu υ   the repeating relation, 

                                               
222

2

1
)(

.
ωνω

ω
υ

−−+
=+

ic

c
i

kuB

E
      (4) 

 is obtained. 

Repeating equation study 

It is evident that the minimum value of the term 
2)( ω−iku  is zero, and then the 

denominator in the Eq. (4) takes the maximum value. Then, we conclude that, at 
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the value
k

u i
ω

= , the 1+iυ has the minimum value, 
22

2

1
νω

ω
υ

+
=+

c

c
i

B

E
, which is 

the same as if the quality ννω ≅+−=Π )(kuj , is taken. 

Another significant result is obtained if the relations 101 υ+= uu , 212 υ+= uu , 

323 υ+= uu , ….. iii uu υ+= −1 ,        are  added by parts, when the relation 

ii uu υυυυ +++++= ...3210  or 

                                                     υ+= 0uu i     (5)   

 is obtained 

 with iυυυυυ ++++= ....321  the whole-total large perturbed velocity. 

 The relation υ+= 0uu i  must be confirmed experimentally.  

Computational results 

 The experiment leads to the following calculations; 

       
mT

mV

B

E

.70

.100 1−

≅      
s

m

B

E
1430≅⇒ , 

2

31

2192

2

10.1,9

10.7.10.6,1.











=








=

−

−−

e
c

m

Be
ω   ,          

2202 10.5,1 −≅⇒ scω        

2192 10 −≅ sν  

When it is taken 00 =−ωku , then  
l

R
k

u .
0

ωω ==
l

Ru .
0

ω=⇒ .   

Taking 
1410.7.2.2 −== sf ππω    1510..4,1 −=⇒ sπω ,  1=l  and 

mR 210.2 −=    then 

s
mu 25

0 10.2.10..4,1 −= π                
s

mu 4
0 10.88,0≅⇒               

In the above case the perturbed velocity 1υ is minimized at the value,  (see eq. 

3) , 
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s

m
1920

20

1
1010

10
.1430

+
=υ                 

s
m13001 ≅⇒υ              

On the other hand, the relation  uE
ευ =  gives, 

                                u
cmV

cmV .
.20

.2
1

1

−
−

=υ          
s

m880=⇒υ             

 

 Now, with  
s

muu )8808800(101 +=+= υ     
s

mu 96801 =⇒ , the perturbed 

2υ  from the repeating equation below can be calculated,  

                                                     
2

1
22

2

2
)(

.
ωνω

ω
υ

−−+
=

kuB

E

c

c  

or                                           
29

10

2
)4,4968,0.5(10.16

10.5,1
.1430

−−
=υ   

                or                       78437500196249999837,13402 =υ  

Now it is taken, 212 υ+= uu ,  78437500196249999837,134096802 +=⇒ u  

78437500196249999837,110202 =⇒ u , and so on. 

5. Explanation- Conclusions 

 The existence of the low frequency waves into the argon magnetized 

plasma was observed in our early experiments at the Plasma Laboratory of 

Demokritos. A satisfactory explanation about it was given as well [ 12,14]. In 

previous publication the possibility for development of the low frequency waves 

has been presented. Two kinds of these waves have been identified already [12, 

14]. The cylindrical symmetry of the plasma column gives them azimouthal 

propagation, whereas the boundaries cause for standing waves formation. By 

using the perturbation theory on the two fluids model, the relation, 

                                         
222

2

)(
.

ωνω

ω
υ

−−+
=

kuB

E

c

c
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is obtained under the conditions uppυ . 

The validity of the above equation is attempted to be proved with the present 

experiment. So, the value of the perturbed velocity υ  was found at first 

experimentally and then by estimation from the above equation. The direct 

measurement of the perturbed velocity υ  is impossible to be carried out as it is 

added on the drift velocity u , resulting in the inability to be distinguished from 

it. For this reason, the relation uE .ευ = was used, which requires the 

measurement of the quantities E , ε  and u . As Figs 4 and 5 show, the electric 

fields E  and ε are maximized in the middle of the radius, where the wave is 

developed, and the ratio ε
E is very close to the perturbation theory condition. 

Furthermore, from Table 2 the values of the drift electron velocity are taken. 

Figure 7 gives the measured values of the perturbed velocityυ . Afterwards, the 

calculated values from the repeating equation are taken. Despite the inevitable 

inclinations of the measurements, the two results are satisfactory close, and may 

have the certainty that the suggested calculation method is right. Another 

significant observation is that, because of the use of the equation as a repeating 

one, the values of the perturbed velocity are slightly affected from the drift 

velocity enlargement. On the contrary, the drift velocity enlargement 

strengthens the function condition uppυ . 

        Appendix 

        The momentum equation on the two fluids theory based on a non-local slab 

is written as,                  

[ ] pVmN
c

BxV
qNEqNVV

t
mN ∇−−++=∇+

∂

∂ rv
rv

rrvrv

ααα
α

ααααααα νε
α

)(.).      

                     where the indicator α is given for both kinds of the charged 

particles, electrons and ions. In the following elaboration, the α is omitted for 

simplicity and the momentum equation for either electrons and ions becomes, 

         [ ] pVNm
c

BxV
NqENqVV

t
mN ∇−−++=∇+

∂
∂ rv

rv
rrvrv

νε )(.).     (A.1) 

 

        where  ),(),,(0 trEEtrnnN tot

vvvvv
+=+= ε , and  ),(0 truV

vvvv
υ+= , 

       and ),(),,( trEtrn
vvv

, and ),( tr
vv

υ , the perturbed qualities with harmonic 

influence 
)( trkje ω−∝

rr

. 



Chaotic Modeling and Simulation (CMSIM)  1: 117-131, 2013      129 
 

When no perturbation exists, the drift velocity 0u , is obtained; 

                                   00
0

000 umn
c

Bxu
qnqn

r
rr

r
νε −+=            (A. 2) 

                        With the separation on the r
r

and θ  axis the drift components are 

given, 
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q
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3)    
                     (drift velocities are represented by the 0-order equation). 

i) If  the perturbation is taken into account,  eq.(A. 1) gives, 
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                           ( the 1
st

  order equation) 

                     β)  
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                           (the 2
vd

  order equation)  

              γ)        And finally, 

                                 0. ≅∇υυ
rrr

n     (A. 6) 

                            (the 3
rd

 order equation). 

_      From  the equilibrium state (zero order equation), the drift velocity 

components  are easily obtained, 
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_       From the first order equation, the perturbent velocity components may be 

given as,  
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     with   ,  νω +−=Π )(kuj  

 

A combination of drift and perturbed velocities components gives, 
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                                  θθ
ω

νω
ε

υ u
E

c

c .
22

22
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+
=     and   r

c

c
r u

E
.
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ω

νω
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(A. 8)  

              If it is considered that νω pp−ku , then it is taken ν≅Π  and the 

perturbed  velocity components (eq.A. 7) become, 

                                  
22

2

.
νω

ω
υθ

+
=

c

c

B

E
       and         

22
.

νω

νω
υ

+
=

c

c
r

B

E
     

                 as the drift velocity components by replacing the dc electric field ε  

with  the perturbed one E . 

If νω pp−ku , then  ν≅Π  is taken likewise and from Eqs  (A. 8) the below 

relations (A. 9) are obtained, 

                                                 rr u
E

ε
υ =    and   θθ ε

υ u
E

=         (A. 9)  
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