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Abstract: Nonlinear analysis of dynamical states based on matrix decomposition theory 
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1    Introduction 

Hopfield’s neural networks have been widely used as a simple and 

intuitive understanding of the associative memory model. This follows from the 

fact that artificial neural networks (ANNs) have some similar characteristics of 

the human associative memory, namely: 1) information retrieval is carried out 

not by means of a memory address supply but through a data measure 

determining the similarity with the standard pattern; 2) data distribution of the 

stored patterns are located throughout the memory space; 3) data access to 

memory space are represented by a dynamical process. Due to the stable states 

of Hopfield’s AAN correspond to local minimum of the Hopfield’s energy 

function, they have well been used to solve various optimization problems [2]. 

Despite its advantages, the Hopfield’s ANNs have several drawbacks. 

These include a small memory capacity for the stored standard patterns and 

higher sensitivity to the correlation between the input patterns. For example, in 

[1] it has been experimentally proved that the memory tends to 0,15N where N 

is a number of neurons in the network. However, in the paper [3] it has been 

shown that the number of stored patterns can not exceed / 4 logN N , besides 

the memory capacity is decreased sharply in case of correlation between the 

stored reference patterns. 

It should be noted that these formulas are not very effective for practical 

application. For example, it is impossible to determine the input pattern 

affecting on the behavior of all trained network. In this connection an 

investigation of dynamical states of Hopfield’s ANN is very important problem. 
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Generally speaking, methods of nonlinear dynamics including calculation of 

minimal attractor embedding dimension, the Lyapunov characteristic exponents 

etc. are basic tools for characterizing behavior of complex systems [4], [5], [6]. 

To quantify more exactly a dynamics of complex system quantitatively more 

exactly these methods have to take into account higher order nonlinearities. In 

the papers [7-14] higher order nonlinearities have been described by means of 

matrix series in state space of complex system. Entirely, decomposition methods 

of nonlinear operators describing the behavior of system in state space (phase 

space) are very important for analysis, identification and modeling of nonlinear 

dynamical systems, especially complex nonlinear dynamical systems [5], [6]. 

In this context, the purpose of this paper is to study the behavior of the 

Hopfield network based on the developed in [7-14] nonlinear analysis methods 

for attractors of complex dynamical systems. This paper investigates the 

stability of the convergence of retrieval binary vectors processes using the 

matrix series expansion theory [7-14]. 

 

2    Analysis of the Hopfield’ ANN Dynamics on the Basis of the 

Matrix Decomposition Theory 

Let us consider the Hopfield ANN as a nonlinear dynamical system consisting 

of three neurons u1, u2 and u3 (Figure 1). It is known [1], the dynamics of the 

Hopfield ANN functioning is given by the following rule: 

( ),

1,

( 1) ( ) T , 1,
N

i i l l i

l i l

u t w F u t i N
= ≠

+ = ⋅ − =∑   (1a) 

where 
,i l

w  are elements of synaptic weights matrix
3 3

W × , N is the input vector 

length (in particular, N = 3), F is an activation function, T
i
 is a bias value of the 

i-th neuron (as a rule, T 0
i

= ). As activation function ( ) 
l

F u  we choose the 

hyperbolic tangent. 

Let us describe the dynamics of states of each neuron 
i
u : 

,

1,

( ) T
N

i i l l i i

l i l

u w F u u
= ≠

= − −∑&    (1b) 

Let us investigate the dynamics of the state changing for all output neurons in 

the Hopfield’s ANN for N=3 in accordance with Figure 1: 
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Fig. 1. The Hopfield’s neural network architecture 

 

In order to use theory of matrix decomposition [7-14] we represent the system 

of equations (2) by the following vector functions: 

1

2

3

u

u u

u

 
 =  
  

&
r& &

&

    (3a) 

12 2 13 3 1

21 1 23 3 2

31 1 32 2 3

( ) ( )

( ) ( ) ( )

( ) ( )

w F u w F u u

f u w F u w F u u

w F u w F u u

+ − 
 = + − 
 + − 

r r
   (3b) 

According to the nonlinear analysis based on matrix decomposition [7-14] we 

study the solution of equation (1b) near a specific standard state *{ }
i
u , where 

( )* *

i i
u u t= , permanently disturbed by value ( )i i

v v t=  of external perturbations 

or internal fluctuations. In result, instead of *

i
u  a new solutions becomes 

*

i i i
u u v= +     (4) 

Taking into account (4) we can find the increment of the vector function in the 

state space of the Hopfield’s ANN (3b) in the form 
* * *( , ) ( ) ( )f v u f u v f u∆ = + − =

r r rr r r r r
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( ) ( )
( ) ( )
( ) ( )

* * * *

12 2 2 2 13 3 3 3 1

* * * *

21 1 1 1 23 3 3 3 2

* * * *

31 1 1 1 32 2 2 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w F u v F u w F u v F u v

w F u v F u w F u v F u v

w F u v F u w F u v F u v

 + − + + − −
 
 = + − + + − −
 
 + − + + − − 

  (5) 

According to the matrix decomposition theory [7-14] let us represent the 

increment of the vector function in the space of states by the matrix series 

expansion: 
* * *( , ) ( ) ( )f u v f u v f u∆ = + − =

r r rr r r r r
 

2 3

(1) (2) (3) ( )

1

1 1 1
( ) ( ) ,

2! 3! !
k

k k

N N N N N N N N
k

L v L v v L v v v L v
k

∞
⊗

× × × ×
=

= + ⊗ + ⊗ ⊗ = ⋅∑
r r r r r r r

 (6a) 

*

( )

T T T
... ...k

k

N N

u

L f
v v v×

 ∂  ∂ ∂  = ⊗ ⊗ ⊗ ⊗   ∂ ∂ ∂    r

r
r r r ,  (6b) 

where 
( )

k

k

N N
L

×
 are matrix kernels of homogeneous nonlinear operators of the 

system into the state space; ( ... )

k

kv v v v⊗ = ⊗ ⊗ ⊗
6447448r r r r

 is k-th Kronecker degree of 

the vector v
r

 [7-14]. 

In particular, the kernels of elements of the first order in accord with (1b) and 

(4) can be expressed by the following formula: 

( )
3

(1)

1,
j j

i

ij il l i

l l ij ju u

f
L w F u u

v v
∗ = ≠

=

 ∂ ∂
= = − = 

∂ ∂  
∑  

( ) ( )3

1,

(1 )

j j

jl i

il il ij ij

l l i j j ju u

F uF u u
w w

v v v
δ δ

∗

∗

= ≠
=

∂∂ ∂
− = − −

∂ ∂ ∂∑ ,  (7a) 

where 
ij

δ  is the Kronecker’s delta-symbol. Taking into account (7a) let us write 

the kernel of the first order in the matrix form: 

12 2 13 3
(1)

3 3 21 1 23 3

31 1 32 2

1 ( ) ( )

( ) 1 ( )

( ) ( ) 1

w F u w F u

L w F u w F u

w F u w F u

∗ ∗

∗ ∗
×

∗ ∗

′ ′ −
 ′ ′= −
 ′ ′ − 

.  (7b) 

Similarly, we find elements of the second order kernel by means of the formula: 

( )

( )
*

*

2 2 3
(2)

1,

3

1,

j j j j

k k k k

j j

k k

i

ijk il l i

l l iu u u uj k j k

u u u u

l i

il

l l ik j j u u

u u

f
L w F u u

v v v v

F u u
w

v v v

∗ ∗

∗ ∗
= ≠= =

= =

∗

= ≠ =
=

 ∂ ∂
= = − = 

∂ ∂ ∂ ∂  

 ∂ ∂∂  = − =
 ∂ ∂ ∂ 

∑

∑
 

( )2 2 *3

2
1,

( )
(1 )

l j

il ij ij ik

l l i j k j

F u F u
w w

v v v
δ δ

∗

= ≠

∂ ∂
= = − ⋅

∂ ∂ ∂∑ .  (8a) 



Chaotic Modeling and Simulation (CMSIM)  1:  133-146, 2013    137 
 

So, the corresponding matrix for the second order kernel takes the following 

form: 

13 312 2
(2)

3 9 21 1 23 3

32 231 1

0 0 ( )0 0 0 0 ( ) 0
( ) 0 0 0 0 0 0 0 ( )

0 0 00 ( ) 0( ) 0 0

w F uw F u
L w F u w F u

w F uw F u

∗∗

∗ ∗
×

∗∗

′′ ′′
 ′′ ′′=
 ′′′′ 

 (8b) 

By analogy with (7b), (8b) we can obtain the matrix form of kernel of the third 

order: 
(3)

3 27
L × =  

13 312 2

21 1 23 3

32 231 1

00 ( )0 00 0 ( ) 0000 000 000 000 000 000
( ) 00 000 000 000 0 0 0 000 000 000 00 ( )

000 000 000 000 000 000 00 00 ( ) 0( ) 00

w F uw F u
w F u w F u

w F uw F u

∗∗

∗ ∗

∗∗

′′′ ′′′
 ′′′ ′′′=
 ′′′′′′ 

(9) 

Restricting number of terms in the matrix series (6a) up to the 3-rd order 

inclusively, we approximate the increment of the vector function (5) into state 

space of the Hopfield’s ANN: 

(1) (2) (3)

3 3 3 9 3 27

1 1
( , ) ( ) ( ) ( ) ( ) ( )

2! 3!
f v u L u v L u v v L u v v v∗ ∗ ∗ ∗

× × ×∆ ≈ + ⋅ ⊗ + ⋅ ⊗ ⊗
r r r r r r r r r r r r

. (10) 

To estimate the accuracy of the approximation, let us we find the following 

three terms of the matrix series in analytical form: 
(1)

3 3

12 2 13 3 1

21 1 23 3 2

331 1 32 2

( )

1 ( ) ( )

( ) 1 ( )

( ) ( ) 1

L u v

w F u w F u v
w F u w F u v

vw F u w F u

∗
×

∗ ∗

∗ ∗

∗ ∗

=

′ ′ −  
 ′ ′= − = 
   ′ ′ −   

r r

 

12 2 2 13 3 3 1

21 1 1 23 3 3 2

31 1 1 32 2 2 3
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( ) ( )

( ) ( )

w F u v w F u v v

w F u v w F u v v
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∗ ∗

∗ ∗
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 ′ ′⋅ + ⋅ − 

.  (11a) 
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∗ ∗
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 
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   (11b) 

 
(3)

3 27
( ) ( )L u v v v∗

× ⋅ ⊗ ⊗ =
r r r r
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3 3
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Substituting (11a)−(11c) in (10) we find an approximating function ( , )
M
g v u∗r r r

 

for *( , )f v u∆
r r r

 as a vector sum of three terms of this matrix series ( 3M = ): 

2 2
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∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

′ ′ ′′ ′′+ − +
′ ′ ′′ ′′= + − + +
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 
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2 6 2 6

v w w

v w w
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∗ ∗ ∗ ∗ ∗ ∗
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   
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    
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To determine the vector function of an approximation error ( , )
M
v uε ∗r r r

, i.e. the 

so-called residual vector, we find the difference between the right-hand sides of 

equations (5) and (12) for 3M = : 

( , ) ( , ) ( , )
M M
v u f v u g v uε ∗ ∗ ∗= ∆ − =

rr r r r r r r r
 

2 3

* * 2 2 2 2

12 2 2 2 2 2
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* * 1 1 1 1

21 1 1 1 1 1

2 3
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31 1 1 1 1 1

( ) ( )
( ) ( ) ( )

2 6
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∗ ∗
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∗ ∗
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
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

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∗ ∗
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∗ ∗
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′′ ′′′
′

′′ ′′′
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





   (13) 

Further we estimate the approximation error 
M

δ  of vector function (5) in the 

state space of Hopfield’s ANN based on a length of vector 

discrepancy ( , )
M
v uε ∗r r r

: 

*
( , )

100%
M N N

M

v u

N

ε
δ = ⋅

r r r

.    (14) 

Then in the case of 3M = , the residual vector 
3

δ  is equal to 

2 2 2

3 1 2 3 2 3 2 1 3 1 3 3 1 2 1 2

1
( , , , ) ( , , , ) ( , , , ) 100%

3
u u v v u u v v u u v vδ ε ε ε∗ ∗ ∗ ∗ ∗ ∗= + + ⋅

r r rr r r r r r r r r r r r
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Before calculating (13) and (14) should be noted that 
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l l u u
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e e

−

−

−
= =
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1 4
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u u
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u e e

−
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2
( ) tanh( ) 8 ;
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32 162 4
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u u
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u u
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u u
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u u
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u e e
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−

−
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−
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+

+ −
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where the values 
l
u  are chosen equal to −1, 0 or +1. Then it follows directly 

that 

0.7616  if 1;
( ) 0.0  if 0;

0.7616  if 1.

0.4200 if 1;
( ) 1.00  if 0;

0.4200  if 1.

0.6397  if 1;
( ) 0.00  if 0;

-0.6397  if 1.

0.0618  if 1;
( ) -

l

l

l

l

l

l

l

l

l

l

u
F x u

u

u
F x u

u

u
F x u

u

u
F x

− = −
= =

=

= −′ = =
=
= −′′ = =
=

= −
′′′ = 2.00  if 0;

-0.7673  if 1.
l

l

u
u


=

=

 

One can see from (12) that in general form the elements of a vector 

approximating functions ( , )
M
g v u∗r r r

 can be described as follows: 

* ( ) *

,

1, 1

1
( , ) ( )

!

N M
i k k

M j j i i j j j

j j i k

g v u v w F u v
k= ≠ =

= − + ∑ ∑ ,  (15) 

where 
( ) *

( )
k

j
F u  denotes the k-th derivative of the activation function ( )

j
F u  

calculated at the point 
*

j
u
r

, N is a number of neurons in the input layer and M is a 

number of kernels of the matrix series (6a). 

Thus, owing to (12) and (15) it has become possible to calculate the 

increment of the vector function ( , )f v u∗∆
r r r

 in the state space of the Hopfield’s 

ANN under condition of input vector of arbitrary length N with accuracy to M-

th kernel. 

To obtain the residual vector ( , )
M
v uε ∗r r r

 and the error value 
M

δ  let us 

simulate the Hopfield’s ANN. 

 

3    A Computational Experiment to Determine the Approximation 

Error for Binary Patterns 

As an example, let us consider the process of restoration of binary vector 
T[1 1 1]=a  using the Hopfield’s ANN (Figure 1). To this end, we use the 

Hebb’s learning rule [1] to calculate the weight matrix 
3 3

W × . In general, the 

formation of the weight matrix is carried out by means of the Hebb’s learning 

rule [1], [2]: 

 

( )
1

1
W E

p

N N i i N N

iN
× ×

=

′ ′= ⊗ −∑ a a ,   (16) 
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where W
N N×  is a weight matrix with size of N N× , besides N is a length of the 

input vector, p  is a number of trained pairs of vectors, E
N N×  is a diagonal 

identity matrix with size of N N× . The operation (2 1)
i i
′ = −a a  is performed to 

convert the binary vectors 
i
a  in the bipolar form, i.e. to find T[1 1 1]′ =a . For 

the considered case N=3 and p =1, we obtain that 

 

[ ]3 3

1 1 0 0 0 1 1
1 1

W 1 1 1 1 0 1 0 1 0 1
3 3

1 0 0 1 1 1 0

×

      
      = − =      
            

,  (17) 

i.e. weight matrix element values are calculated as follows: 
12 13

1/ 3w w= = , 

21 23
1/ 3w w= = , 

31 32
1/ 3w w= = , а 

11 22 33
0w w w= = = . 

Considering the obtained element values 
ij
w  of the weights matrix 

3 3
W ×  accord 

with (17), we rewrite the system (2) as follows: 

 

( )

( )

( )

1 2 3 1

2 1 3 2

3 1 2 3

1
( ) ( ) ;

3

1
( ) ( ) ;

3

1
( ) ( ) .

3

u F u F u u

u F u F u u

u F u F u u

 = + −



= + −



= + −


&

&

&

   (18) 

According to the above mentioned statements of the matrix decomposition 

theory (3a) − (12) with respect to a Hopfield’s ANN, an external disturbance 

vector is interpreted as a disturbance vector v
r

 distorting the standard vector u∗r . 

In other words, according to formula (4) let us assume that the vector v
r

 is the 

disturbance from behind the input vector u
r

 differs from the reference vector 

u∗r , i.e. u u v∗− =
r r r

. 

Thus, the elements of the vector v
r

 belong to the set «−1», «0» and «+1» that 

defines the following: if 0
i
v =  then 

i i
u u∗= , i.e. the test vector elements 

completely coincide with elements of the standard vector; if 1
i
v = ±  then 

i i
u u∗≠ . Consequently, the vector magnitude v

r
 can be estimated on the basis of 

the Hamming’ distance ( , )d u u∗r r
 between vectors u

r
 and u∗r , i.e. by the number 

of positions in which these vectors are different. In other words, the Hamming 

distance ( , )d u u∗r r
 is the norm of vector v

r
: 

1

( , )
N

i

i

d u u v v
∗

=

= = ∑
r r r

,    (19) 

where ( , )d u u∗r r
 is the Hamming distance and N is a  length of the vector v

r
. 
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A computational simulation of the Hopfield’ ANN permits to determine the 

numerical values of the vector 
M

ε
r

 components of the approximation error. The 

data of computational simulation are presented in the Table 1 which displays the 

approximation error 
M

δ  of vector function in the state space of the Hopfield’s 

ANN on the basis of the theory of matrix decomposition and computer 

modeling. 

The fifth column of this Table 1 shows the kernels number M used for function 

approximation. As can be seen from the Table 1, the maximum error occurs in 

the case of linear approximation ( 1M = ) and matches to 9.3% (in the first 

example), and the minimum error occurs under taking into account the nonlinear 

terms of higher order in equation (6a), besides it is equal to 1.05% (see the 

second example). The first 5 kernels have been used in the simulation only. 

However, the values 
M

δ  of the approximation error for the first pair of vectors 

u∗r  and v
r

 lead to an assumption about periodic behavior. 

At the same time, a series of experiments estimating the residual vector
M

ε
r

 and 

the approximation error 
M

δ  have been carried with an activation function as the 

sigmoidal function ( ) 1/(1 )l
l

F u e−= + . As a result, the values 
M

ε
r

 and 
M

δ  are 

found slightly higher but the behavior error is remained the same. 

 

Table 1. Calculation of the approximation error in computational experiments 

with Hopfield’s ANN 

No u
r

 u∗r
 v

r
 M  

Theoretical 

estimation f∆
r

 

Computational 

estimation f∆
r

 M
ε
r

 M
δ , 

% 

1 2 3 4 5 6 7 8 9 

1 1 
-0.1400

1.0
-0.1400

 
 
  

 
-0.1139

0.0
-0.1139

 
 
  

 9,30 

2 2 
-0.2466

1.0
-0.2466

 
 
  

 
-0.0073

0.0
-0.0073

 
 
  

 0,60 

3 3 
-0.2040

1.0
-0.2040

 
 
  

 
-0.0499

0.0
-0.0499

 
 
  

 4,07 

4 4 
-0.1947

1.0
-0.1947

 
 
  

 
-0.0591

0.0
-0.0591

 
 
  

 4,83 

5 

1
0
1

 
 
  

 
1
1
1

 
 
  

 
0
1

0

 
− 

  
 

5 
-0.1793

1.0
-0.1793

 
 
  

 

-0.2539
1.0

-0.2539

 
 
  

 

-0.0746
0.0

-0.0746

 
 
  

 6,09 
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Table 1 (continuation) 

1 2 3 4 5 6 7 8 9 

6 1 
-0.3333
-0.3333

-1.0

 
 
    

-0.0795
-0.0795

0.0

 
 
  

 6,49 

7 2 
-0.3333
-0.3333

-1.0

 
 
    

-0.0795
-0.0795

0.0

 
 
  

 6,49 

8 3 
-0.2222
-0.2222

-1.0

 
 
    

-0.0316
-0.0316

0.0

 
 
  

 2,58 

9 4 
-0.2222
-0.2222

-1.0

 
 
    

-0.0316
-0.0316

0.0

 
 
  

 2,58 

10 

1
1
1

 
 
  

 
1
1
0

 
 
  

 
0
0
1

 
 
  

 

5 
-0.2667
-0.2667

-1.0

 
 
    

-0.2539
-0.2539

-1.0

 
 
  

 

0.0128
0.0128

0.0

 
 
  

 1,05 

 
4    Computer Simulation of Stages of the Hopfield’s ANN 

functioning 

One of the main applications of ANN is the classification and pattern 

recognition. The task of classification is the reference of the input vector to one 

of the known classes. A stable functioning of the classifier depends on a 

measure of similarity of the input vector with the standard one storing in the 

memory of the classifier. This stability also depends on a level of noise imposed 

on the input vector when the latter can be still recognized correctly. 

The process of patterns retrieving based on the Hopfield’s ANN is to 

suppress the distortions presenting in the input vectors. Due to the known 

difficulties of the mathematical analysis of complex dynamical behavior of 

recurrent ANN, the question of the maximal possible level determining has been 

not enough iterpretive in the scientific literature. Therefore, one of purposes of 

this paper is to develop a method of nonlinear analysis based on matrix 

decomposition allowing predicting the behavior of the Hopfield’s ANN under 

recognizing the input vectors. 

However, the above illustrated example for recording and recovery (with the 

help of Hopfield’s ANN) of binary vector (consisting of 3 elements only) does 

not allow to fully estimate the benefits of the proposed method. Therefore, let us 

consider a typical problem of Hopfield’s ANN concerning associative 

restoration of noisy patterns. 
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For example, Figure 2 shows two noisy images (2b) and (2c) represented by 

vectors 
1
u
r

, 
2
u
r

, and one distorted image (2d) represented by a vector 
3
u
r

, which 

have been obtained by applying to the standard image (2a) (represented by a 

vector u∗r ) disturbances in the form of noises (2e)−(2g) encoded by vectors 
1
v
r

, 

2
v
r

 and 
3
v
r

 respectively. Two-dimensional vector with size of 32×32 represents 

different types of monochrome images of the letter "A". 

 

     

 

1
u
r

 

 

1
v
r

 
1

( , ) 51d u u∗ =
r r

5%d =%  

b)  e)   

 

2
u
r

 

 

2
v
r

 
2

( , ) 102d u u∗ =
r r

10%d =%  

c)  f)   

 
a) 

u∗r  

 

3
u
r

 

 

3
v
r

 
3

( , ) 330d u u∗ =
r r

32%d =%  

  d)  g)   

Fig.  2. The process of applying distortion and noise on the standard image 

 

For each pair of vectors, the values of the Hamming distance ( , )
i

d u u∗r r
 [15] 

are shown. However, as it follows from this example, the analysis of vectors 

consisting of a large number of elements (32×32=1024) is not always 

convenient to use the specified value. Therefore, we introduce a new value, so-

called a relative Hamming distance d% , besides its value does not depend on the 

length of vectors u
r

 and *u
r

: 

( , )
( , ) 100%

d u u
d u u

N

∗
∗ = ⋅

r r
r r% .   (20) 

In this regard, the vector v
r

 is to be characterized by a variable ( , )d u u∗r r%  which 

is calculated by the ratio of the Hamming distance ( , )
i

d u u∗r r
 to the value of 

elements of this vector v
r

 

Even in the case of presence 32% of distortions the trained Hopfield’ ANN 

is able to qualitatively recover the input image to the standard values. This is 

achieved due to the fact that one image is recorded by the ANN only. However, 
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the practical implementation of the Hopfield’ ANN shows that an increase in the 

number of images recorded in the network leads to decreases of the ability of 

the Hopfield’ ANN to restore them, i.e. an image can be restored only in the 

case of a slight distortion. 

Due to (15) it is possible to numerically analyze the influence of the initial 

distortions in the process of pattern restoring. For example, Figure 3 shows the 

gradient of the increment of the function describing the dynamics of the 

Hopfield’s ANN consisting of 1024 neurons in which each image represents a 

two-dimensional monochrome image of the letter "A". The standard vector u∗r  

and input vector 
3
u
r

 for these images are illustrated in Figure 2a and 2d, 

respectively. As one can see from these data, a new vector is characterized by 

the small perturbations therefore it has properly been restored. 

It should be noted that in result of the restoration of pattern, the image parts 

are presented by black and dark gray colors in Figure 3, i.e. by the values -

0.1470 and -0.1464, have been assigned to the object, whereas these shown by 

light gray and white, i.e. by values -0.0007 and 0.0, have been interpreted as 

background. Thus, knowing the threshold value, it is possible to determine in 

advance how the input vector can influence the process of recovery through the 

ANN. 

-0,1470 

-0,1464 

-0,0007 

 
0,0 

Fig. 3. The gradient values of the function increments 

On the other hand, knowing the value of the standard elements of 

recognizable images, we can estimate based on formula (15) what percentage of 

the distortions for already trained network can be overcome. In other words, the 

Hopfield’ ANN should consistently apply to the images in which the percentage 

of distortion increases with each time. Then, analyzing the values i

M
g  we can 

determine the threshold value when the system would no longer be able to 

adequately restore the image. 

 

4    CONCLUSIONS 

In this paper we propose a new approach for the numerical determination of 

the perturbations of the Hopfield’ ANN on the stages of the restoration of 

previously unknown pattern with usage of the matrix decomposition theory 

[7-14]. The approximating function i

M
g  has been derived besides its accuracy 
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of restoration depends on the number M of the matrix kernels of homogeneous 

non-linear operators of the complex dynamical system as the Hopfield’s ANN. 
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