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Abstract: A relation between the optimal solution of the optimization problem and the 

stability and bifurcation properties of the corresponding dynamical system is suggested 

in this work. There exists a relation between the optimal solution of an optimization 

problem and an equilibrium point of a dynamical system. In this sense stability 

properties, Lyapunov exponents and bifurcations of the resulting dynamical systems can 

be studied.  

Keywords: Dynamical systems, Optimization, Lyapunov exponents.  

 

1. Introduction:  
 

Shadow price is the unit change in the objective function of the optimal solution 

of an optimization problem. The shadow price is equivalent to the Lagrange 

multiplier at the optimal solution in the nonlinear scenario. It is also referred to 

as the dual variable considering the Lagrangian is the dual problem of the 

original optimization problem. The gradient of the objective function is a linear 

combination of the constraint function gradients with the weights equal to the 

Lagrange multipliers. Investigations on various linear optimization problems 

can be formulated as dynamical systems [4]. Stability analysis, Lyapunov 

exponents and bifurcation patterns of the resulting dynamical systems can be 

studied in a localized manner [2]. There is a relation between the global 

optimum value of the optimization problem to the local stability analysis of the 

corresponding dynamical system. The bifurcation properties and Lyapunov 

exponents of the corresponding dynamical system can be studied. The aim is to 

compare these invariant parameters of the dynamical systems to the shadow 

prices of the optimization problem. The motivation for this is the fact that to 

calculate a Lyapunov exponent, each dynamical variable is given a small 

variation and the corresponding hypercube is allowed to evolve in time [1]. Let 

us start by defining an optimization problem as 

 

  
 

Then the Lagrangian function is given by (in the two variable case) 
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(with obvious generalization to higher dimensions) and by solving this function 

for its saddle point we obtain the shadow prices and the maximal utility,   

,  given by the following formula: 

 

 
 

 

On the other hand, shadow prices are found by observing the change in the 

optimal solution under a similar variation on the constraint of the direct problem 

by relaxing the constraint or alternatively, varying the corresponding parameter 

of the objective function in the dual problem. The definitions for the Lyapunov 

exponents and shadow prices are thus related to a change due to a variation. The 

former is a familiar element of the theory of dynamical systems. The route to 

chaos leads to Lyapunov exponents and this work introduces a new point of 

view for shadow prices as chaos search in dynamical systems [3]. Under the 

assumption that f be differentiable and  the variational equation is: 

 

 
 

Then the Lyapunov exponent is defined to be 

 
 

A negative Lyapunov exponent indicates a stable equilibrium point and a 

positive Lyapunov exponent indicates chaos. So Lyapunov exponents are 

studied numerically to see if the given system shows chaos for certain parameter 

values. It has been proven that discrete-time dynamical systems are used in 

optimization algorithms. We also know that a discrete-time dynamical system 

can be transformed into a continuous dynamical system, i.e. system of 

differential equations by Euler’s method. Both proofs depend on Lyapunov 

stability theory. 

 

2. Optimization problem and corresponding dynamical system 
Theorem 2.1: For the optimization problem  

kk yxyxf +=),(max  

with respect to yxyxg −−= 1),(  
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the extremum values are )
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3. Bifurcation analysis: 
The optimization problem discussed in the previous section can be considered as 

the corresponding dynamical system according to the Euler scheme: 
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Investigating the bifurcation analysis of this system around the trivial 

equilibrium point, two different bifurcation patterns are achieved according to 

the value of k being odd or even. The first case where k is even (k=2,4,…) and a 

is chosen as the bifurcation indicates a limit point (LP) and a Bogdanov-Takens 

(BT) bifurcation point as given in Figure 2.1. When b is varied another case 

where a subcritical Hopf bifurcation point and a transcritical bifurcation point 

are observed as given in Figure 2.2.  The second case where k is odd (k=1,3,…) 

and a is chosen as the bifurcation indicates two limit point (LP), a Bogdanov-

Takens (BT) and a cusp (CP) bifurcation points as given in Figure 2.3. When b 

is varied another case where a subcritical Hopf bifurcation point and a 

transcritical bifurcation point are observed as given in Figure 2.4.   
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Figure 2.1. For even k (k=2,4,…) and arbitrary a 

 

 
Figure 2.2. For even k(k=2,4,…) and arbitrary b 
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Figure 2.3. For odd k  (k=3,5,…) and arbitrary a 

 

 
Figure 2.4. For odd k (k=3,5,…) and arbitrary b 

 

4. Conclusion 
The parameter b in our model indicates subcritical Hopf bifurcation for both 

even and odd cases of k. Bogdanov-Takens bifurcation is observed in all of the 

cases. Cusp bifurcation is observed for odd values of k. The higher nonlinearity 

for x and y does not affect the bifurcation phenomena. There are two different 

bifurcation patterns for odd and even values of k. Real values are taken into 

consideration in order to study real world situations. 
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