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Abstract: An existing anti-symmetric-case piecewise-linear delay differential 

equation (DDE) has exhibited chaos at a delay time τ = 3 using an odd term fa = f1 for a = 

1. Three new compound anti-symmetric-case piecewise-linear DDEs are presented. Each 

DDE exhibits chaos using τ < 3. The first compound DDE is a combination of two odd 

terms f1 and f3 where a = 1 and 3, and 1.70 < τ < 2.10. The second compound DDE is a 

combination of two even terms f2 and f4 where a = 2 and 4, and 1.50 < τ < 1.90. Finally, 

the third compound DDE is a combination of two odd terms f1 and f3, and an even term f2 

where a = 1, 2, and 3, and 1.05 < τ < 1.27. Not only can the higher value of ‘a’ reduce the 

value of τ for chaos, but the more combination of terms fa also can. The reduction in τ 

enables simple implementation of a LC network in the delay unit.  
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1. Introduction 
Since the discovery of the eminent Lorenz chaotic attractor in 1963 [1], 

studies of chaotic behavior in nonlinear systems have attracted great attention 

due to a variety of applications in science and technology, e.g. chaos-based 

secure communications [2], [3], [4]. Time-delay systems can exhibit chaos with 

a relatively simple model involving a value of the dynamical variable at one or 

more times in the past [5]. They have an infinite-dimensional state space with a 

large value of positive Lyapunov exponents and are good candidates for highly 

secure communications. In general, a first-order time-delay system is described 

by a delay differential equation (DDE) of the form. 

 

&x(t) = f [x(t),x
τ
]    (1) 

 

where the overdot denotes a time (t) derivative, xτ = x(t−τ) is the value of x at an 

earlier time (t−τ), and τ is a delay time, i.e. τ ≤ t.  

One of the earliest and most widely studied DDE is the Mackey-Glass 

equation [6], as shown in (2), proposed to model the production of white blood 

cells. The equation exhibits chaos with parameters such as a = 0.2, b = 0.1, c = 

10, and τ = 23. Other examples of DDEs exhibiting chaos include Ikeda DDE 

[7] and sinusoidal DDE [5]. 
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&x =
ax

τ

1+ x
τ

c
+ bx,      (2) 

Recently, chaos in an anti-symmetric-case piecewise-linear DDE has been 

reported [5], as shown in (3). 

 

&x = x
τ
+1 − x

τ
−1 − x

τ
    (3) 

 

for τ = 3. The largest Lyapunov exponent λ = 0.0909. Such a system is 

especially amenable to implementation with electronic circuits [8]. A delay unit 

may be implemented using an LC network [9]. As the size of the LC network is 

proportional to the value of the delay time τ, a reduction of τ in (3) is preferable. 

In this paper, three new compound anti-symmetric-case piecewise-linear 

DDEs are presented. Each DDE exhibits chaos using delay time τ < 3. Such a 

reduction of the delay time in the DDEs enables simple implementation of the 

LC network in the delay unit.  

 

2. Compound Anti-Symmetric-Case Piecewise-Linear DDEs 
For simplicity, the right hand side of (3) can be modified as a general 

function fa as shown in (4) 

 

  
af x a x a x

τ τ τ
= + − − −    (4) 

 
where the parameter ‘a’ is an integer. Equation (3) is therefore represented by 

an odd term f1 as a = 1. Three new compound anti-symmetric-case piecewise-

linear DDEs are proposed. The first compound DDE is a combination of two 

odd terms f1 and f3 where a = 1 and 3, as shown in (5). The second compound 

DDE is a combination of two even terms f2 and f4 where a = 2 and 4, as shown 

in (6). Finally, the third compound DDE is a combination of two odd terms f1 

and f3, and an even term f2 where a = 1, 2, and 3, as shown in (7).   

 

&x1 = f1 + f3

= x
τ
+1 − x

τ
−1 + x

τ
+ 3 − x

τ
− 3 − 2x

τ

                  (5) 

 
&x2 = f2 + f4

= x
τ
+ 2 − x

τ
− 2 + x

τ
+ 4 − x

τ
− 4 − 2x

τ

                    (6) 

 

   

&x
3
= f

1
+ f

2
+ f

3

= x
τ
+1 − x

τ
−1 + x

τ
+ 2 − x

τ
− 2 + x

τ
+ 3 − x

τ
− 3 − 3x

τ

  (7) 
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3. Numerical Results 
For the first compound DDE shown in (5), Figures 1, 2 and 3 visualize 

numerical results of a chaotic waveform, a chaotic attractor, and a bifurcation 

diagram, respectively, using τ = 2.07. The largest Lyapunov exponent is λ = 

0.3112. 

 
 

Fig. 1.  A chaotic waveform of (5) with τ = 2.07. 

 

 
 

Fig. 2.  A chaotic attractor of (5) with τ = 2.07. 

 

 
Fig. 3.  A bifurcation diagram of (5). 
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For the second compound DDE shown in (6), Figures 4 and 5 illustrate 

numerical results of a chaotic attractor and a bifurcation diagram, respectively. 

(6), using τ = 1.75. The largest Lyapunov exponent is λ = 0.1174.  

 

 
 

Fig. 4.  A chaotic attractor of (6) with τ = 1.75. 

 

 

 
 

Fig. 5.  A bifurcation diagram of (6). 

 

 

For the third compound DDE shown in (7), Figures 6 and 7 depict 

numerical results of a chaotic attractor and a bifurcation diagram, respectively, 

using τ = 1.20. The largest Lyapunov exponent is λ = 0.2823. 
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Fig. 6.  A chaotic attractor of (7) with τ = 1.20. 

 
 

Fig. 7.  A bifurcation diagram of (7). 

 

Table 1 summarizes ranges of delay time τ of equations (5), (6), and (7), for 

which chaos occurs. There are various periodic windows immersed in chaos. It 

can be notice from Table 1 that not only can the higher value of the parameter 

‘a’ of fa reduce the value of the time delay τ for chaos, but the more 

combination of terms fa also can. 

 

 Table 1: Summaries of Ranges of τ For Chaos 

 

Equations Ranges of τ 

&x
1
= f

1
+ f

3
 1.70 < τ < 2.10 

&x
2
= f

2
+ f

4
 1.50 < τ < 1.90 

&x
3
= f

1
+ f

2
+ f

3
 1.05 < τ < 1.27 
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3. Conclusions 
Three new compound anti-symmetric-case piecewise-linear DDEs have 

been presented. The first combines two odd terms f1 and f3 and chaos occurs for 

1.70 ∠ τ ∠ 2.10. The second combines two even terms f2 and f4 and chaos 

occurs for 1.50 ∠ τ ∠ 1.90. Finally, the third combines three terms f1, f2 and f3 

and chaos occurs for 1.05 ∠ τ ∠ 1.27.  Chaos occurs using less delay timeτ than 

that of the existing approach. The reduction in delay time enables the reduction 

in size of the LC network of the delay unit. 
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