Chaos in Compound Anti-Symmetric-Case Piecewise-Linear Delay Differential Equations

Phocharavidh Phuphatana and Banlue Srisuchinwong

Sirindhorn International Institute of Technology, Thammasat University, Pathum-Thani, Thailand 12000 E-mail: <u>phocharavidh.pp@gmail.com</u>, <u>banlue@siit.tu.ac.th</u>

Abstract: An existing anti-symmetric-case piecewise-linear delay differential equation (DDE) has exhibited chaos at a delay time $\tau = 3$ using an odd term $f_a = f_1$ for a = 1. Three new compound anti-symmetric-case piecewise-linear DDEs are presented. Each DDE exhibits chaos using $\tau < 3$. The first compound DDE is a combination of two odd terms f_1 and f_3 where a = 1 and 3, and $1.70 < \tau < 2.10$. The second compound DDE is a combination of two even terms f_2 and f_4 where a = 2 and 4, and $1.50 < \tau < 1.90$. Finally, the third compound DDE is a combination of two odd terms f_1 and f_3 , and an even term f_2 where $a = 1, 2, and 3, and <math>1.05 < \tau < 1.27$. Not only can the higher value of 'a' reduce the value of τ for chaos, but the more combination of terms f_a also can. The reduction in τ enables simple implementation of a LC network in the delay unit. **Keywords:** chaos, delay differential equation; reduced-delay

1. Introduction

Since the discovery of the eminent Lorenz chaotic attractor in 1963 [1], studies of chaotic behavior in nonlinear systems have attracted great attention due to a variety of applications in science and technology, e.g. chaos-based secure communications [2], [3], [4]. Time-delay systems can exhibit chaos with a relatively simple model involving a value of the dynamical variable at one or more times in the past [5]. They have an infinite-dimensional state space with a large value of positive Lyapunov exponents and are good candidates for highly secure communications. In general, a first-order time-delay system is described by a delay differential equation (DDE) of the form.

$$\dot{\mathbf{x}}(t) = f[\mathbf{x}(t), \mathbf{x}_{-}] \tag{1}$$

where the overdot denotes a time (*t*) derivative, $x_{\tau} = x(t-\tau)$ is the value of *x* at an earlier time $(t-\tau)$, and τ is a delay time, i.e. $\tau \le t$.

One of the earliest and most widely studied DDE is the Mackey-Glass equation [6], as shown in (2), proposed to model the production of white blood cells. The equation exhibits chaos with parameters such as a = 0.2, b = 0.1, c = 10, and $\tau = 23$. Other examples of DDEs exhibiting chaos include Ikeda DDE [7] and sinusoidal DDE [5].

Received: 6 April 2012 / Accepted: 5 October 2012 © 2013 CMSIM

210 P. Phuphatana and B. Srisuchinwong

$$\dot{\mathbf{x}} = \frac{\mathbf{a}\mathbf{x}_{\tau}}{1 + \mathbf{x}_{\tau}^{2}} + \mathbf{b}\mathbf{x},\tag{2}$$

Recently, chaos in an anti-symmetric-case piecewise-linear DDE has been reported [5], as shown in (3).

$$\dot{\mathbf{x}} = |\mathbf{x}_{\tau} + 1| - |\mathbf{x}_{\tau} - 1| - \mathbf{x}_{\tau} \tag{3}$$

for $\tau = 3$. The largest Lyapunov exponent $\lambda = 0.0909$. Such a system is especially amenable to implementation with electronic circuits [8]. A delay unit may be implemented using an LC network [9]. As the size of the LC network is proportional to the value of the delay time τ , a reduction of τ in (3) is preferable.

In this paper, three new compound anti-symmetric-case piecewise-linear DDEs are presented. Each DDE exhibits chaos using delay time $\tau < 3$. Such a reduction of the delay time in the DDEs enables simple implementation of the LC network in the delay unit.

2. Compound Anti-Symmetric-Case Piecewise-Linear DDEs

For simplicity, the right hand side of (3) can be modified as a general function f_a as shown in (4)

$$f_{a} = |x_{\tau} + a| - |x_{\tau} - a| - x_{\tau}$$
(4)

where the parameter 'a' is an integer. Equation (3) is therefore represented by an odd term f_1 as a = 1. Three new compound anti-symmetric-case piecewiselinear DDEs are proposed. The first compound DDE is a combination of two odd terms f_1 and f_3 where a = 1 and 3, as shown in (5). The second compound DDE is a combination of two even terms f_2 and f_4 where a = 2 and 4, as shown in (6). Finally, the third compound DDE is a combination of two odd terms f_1 and f_3 and an even term f_2 where a = 1, 2, and 3, as shown in (7).

$$\dot{\mathbf{x}}_{1} = \mathbf{f}_{1} + \mathbf{f}_{3} = |\mathbf{x}_{r} + 1| - |\mathbf{x}_{r} - 1| + |\mathbf{x}_{r} + 3| - |\mathbf{x}_{r} - 3| - 2\mathbf{x}_{r}$$
(5)

$$\dot{\mathbf{x}}_{2} = \mathbf{f}_{2} + \mathbf{f}_{4} = |\mathbf{x}_{r} + 2| - |\mathbf{x}_{r} - 2| + |\mathbf{x}_{r} + 4| - |\mathbf{x}_{r} - 4| - 2\mathbf{x}_{r}$$
(6)

$$\dot{\mathbf{x}}_{3} = \mathbf{f}_{1} + \mathbf{f}_{2} + \mathbf{f}_{3} = |\mathbf{x}_{\tau} + \mathbf{i}| - |\mathbf{x}_{\tau} - \mathbf{i}| + |\mathbf{x}_{\tau} + 2| - |\mathbf{x}_{\tau} - 2| + |\mathbf{x}_{\tau} + 3| - |\mathbf{x}_{\tau} - 3| - 3\mathbf{x}_{\tau}$$
(7)

3. Numerical Results

For the first compound DDE shown in (5), Figures 1, 2 and 3 visualize numerical results of a chaotic waveform, a chaotic attractor, and a bifurcation diagram, respectively, using $\tau = 2.07$. The largest Lyapunov exponent is $\lambda = 0.3112$.

Fig. 1. A chaotic waveform of (5) with $\tau = 2.07$.

Fig. 2. A chaotic attractor of (5) with $\tau = 2.07$.

Fig. 3. A bifurcation diagram of (5).

212 P. Phuphatana and B. Srisuchinwong

For the second compound DDE shown in (6), Figures 4 and 5 illustrate numerical results of a chaotic attractor and a bifurcation diagram, respectively. (6), using $\tau = 1.75$. The largest Lyapunov exponent is $\lambda = 0.1174$.

Fig. 4. A chaotic attractor of (6) with $\tau = 1.75$.

Fig. 5. A bifurcation diagram of (6).

For the third compound DDE shown in (7), Figures 6 and 7 depict numerical results of a chaotic attractor and a bifurcation diagram, respectively, using $\tau = 1.20$. The largest Lyapunov exponent is $\lambda = 0.2823$.

Fig. 6. A chaotic attractor of (7) with $\tau = 1.20$.

Fig. 7. A bifurcation diagram of (7).

Table 1 summarizes ranges of delay time τ of equations (5), (6), and (7), for which chaos occurs. There are various periodic windows immersed in chaos. It can be notice from Table 1 that not only can the higher value of the parameter 'a' of f_a reduce the value of the time delay τ for chaos, but the more combination of terms f_a also can.

Table 1: Summaries of Ranges of τ For Chaos

Equations	Ranges of τ
$\dot{\boldsymbol{X}}_{1} = \boldsymbol{f}_{1} + \boldsymbol{f}_{3}$	$1.70 < \tau < 2.10$
$\dot{\mathbf{X}}_2 = \mathbf{f}_2 + \mathbf{f}_4$	$1.50 < \tau < 1.90$
$\dot{\boldsymbol{X}}_3 = \boldsymbol{f}_1 + \boldsymbol{f}_2 + \boldsymbol{f}_3$	$1.05 < \tau < 1.27$

214 P. Phuphatana and B. Srisuchinwong

3. Conclusions

Three new compound anti-symmetric-case piecewise-linear DDEs have been presented. The first combines two odd terms f_1 and f_3 and chaos occurs for $1.70 \ \angle \tau \ \angle 2.10$. The second combines two even terms f_2 and f_4 and chaos occurs for $1.50 \ \angle \tau \ \angle 1.90$. Finally, the third combines three terms f_1 , f_2 and f_3 and chaos occurs for $1.05 \ \angle \tau \ \angle 1.27$. Chaos occurs using less delay time τ than that of the existing approach. The reduction in delay time enables the reduction in size of the LC network of the delay unit.

Acknowledgments: This work was supported by telecommunications research and industrial development institute (TRIDI), NBTC, Thailand (grant TARG 2553/002), and the national research university project of Thailand, office of higher education commission.

References

- 1. E. N. Lorenz. Deterministic nonperiodic flow, J. Atmos. Sci., vol. 20, 130-141, 1963.
- K. M. Cuomo, A. V. Oppenheim and S. H. Strogatz. Synchronization of Lorenz-based chaotic circuits with applications to communications, *IEEE Trans. Cir. Sys.*, vol. 40, no. 10, 626-633, 1993.
- L. Kocarev, K. S. Halle, K. Eckert and L. O. Chua. Experimental demonstration of secure communications via chaotic synchronization, *Int. J. Bifurcat Chaos*, vol. 2, no. 3, 709-713, 1992.
- 4. B. Srisuchinwong, B. Munmuangsaen. A highly chaotic attractor for a dual-channel single-attractor, private communication system. In: Christos H. Skiadas, Ioannis Dimotikalis, and Charilaos Skiadas *Chaos Theory: Modeling, Simulation and Applications*. World Scientific, pp 399–405, 2011.
- 5. J. C. Sprott. Time-Delay Systems. In: J. C. Sprott *Elegant Chaos*. World Scientific, pp 221–232, 2010.
- 6. M. Mackey and L. Glass. Oscillation and chaos in physiological control systems, *Science 197*, 287-289, 1977.
- 7. K. Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, *J. Opt. Commun.* 30, 257-261, 1979.
- 8. U. an der Heiden, and M. C. Mackey. The dynamics of production and destruction: Analytic insight into complex behavior, *J. Math. Biol.* 16, 75-101, 1982.
- 9. A. Namajūnas, K. Pyragas, and A. Tamaševičius. An electronic analog of the Mackey-Glass system, *Physics Letters A*, vol. 201, 42-46, 1995.