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Abstract. The notion of dynamical traps is proposed to allow for effect caused by
the bounded capacity of human cognition in ordering events or actions according to
their preference. As a result, in the vicinity of an optimal behavior a decision-maker
has no stimulus to change his current behavior. By way of example, one dimensional
system of coupled oscillators with dynamical traps is studied numerically. The model
assumes the dynamical traps to form a “low” dimensional region in the correspond-
ing phase space where the system motion is stagnated. It is demonstrated that the
dynamical traps and possible noise individually can cause the given system to exhibit
complex dynamics and to undergo various phase transitions.
Keywords: Human behavior, Fuzzy rationality, Dynamical traps, Complex dynam-
ics, Phase transitions.

1 Introduction

During the last decades there has been considerable progress in describing so-
cial systems based on physical formalism developed in statistical physics and
applied mathematics (for a review see articles in Encyclopedia [1]). In parti-
cle, the notion of energy and the based on it master equation were employed
to simulate opinion dynamics, the dynamics of culture and languages (e.g.,
[2–4]); the social force model inheriting the basic concepts from Newtonian
mechanics was used to simulate traffic flow, pedestrian motion, the motion of
bird flocks, fish schools, swarms of social insects (e.g., [2,5–7]). Continuing the
list of examples, we note the application of the Lotka-Volterra model and the
related reaction-diffusion systems to stock market, income distribution, popu-
lation dynamics [8]. The replicator equations developed initially in the theory
of species evolution were applied to the moral dynamics [9]. The notion of a
fixed-point attractor as a stable equilibrium point in the system dynamics that
corresponds to some local minimum in a certain potential relief, the collection
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of point type attractors forming a basin, the notion of latent attractors, pe-
riodic attractors representing limit cycles, and deterministic chaos are widely
met in social psychology [10]. In addition, the concept of synchronization of
interacting oscillators was used to model social coordination [11].

In spite of these achievements we have to note that the mathematical theory
of social systems is currently at its initial stage of development. Indeed, animate
beings and objects of the inanimate world are highly different in their basic
features, in particular, such notions as willingness, learning, prediction, motives
for action, moral norms, personal and cultural values are just inapplicable to
inanimate objects. This enables us to pose a question as to what individual
physical notions and mathematical formalism should be developed to describe
social systems in addition to the available ones inherited from modern physics.

The present paper discusses one of such notions, namely, the fuzzy rational-
ity [12] introduced here to describe the bounded capacity of human cognition
in evaluating events, actions, etc. according to their preference. When, for
example, two actions are close to each other in quality from the standpoint
of a person making a decision their choice may be random because he ought
to consider them equivalent. The notion of dynamical traps accounts for this
feature. In particular, dealing with a dynamical system its stationary point
rst being initially stable is replaced by a certain neighborhood Qtr called the
dynamical trap region such that when the system goes into Qtr its dynamics
is stagnated. This mimics vain actions of an operator in directing the system
motion towards the point rst precisely. Indeed, when the system under the
operator control gets any point in Qtr the operator may consider the current
situation perfect because he just does not “see” rst and until the system leaves
Qtr he has no reason to keep the control active. The goal of the present work
is to demonstrate that the fuzzy rationality can be responsible for complex
emergent phenomena in such systems.

2 Lazy bead model

The following model captures the basic features of such human behavior. Let
us consider a chain of N “lazy” beads (Fig. 1). Each of these beads can move
in the vertical direction and its dynamics is described in terms of the deviation
xi(t) from the equilibrium position and the motion velocity vi(t) = dxi/dt
depending on time t, here the bead index i runs from 1 to N . The equilibrium
position xi = 0 is specified assuming the formal initial (i = 0) and terminal
(i = N + 1) beads to be fixed. Each bead i “wishes” to get the “optimal”
middle position with respect to its nearest neighbors. So one of the stimuli for
it to accelerate or decelerate is the difference

ηi = xi −
1

2
(xi−1 + xi+1)

provided its relative velocity

ϑi = vi −
1

2
(vi−1 + vi+1)
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equilibrium
position

Fig. 1. The chain of N beads under consideration and the structure of their individual
phase space Ri = {xi, vi} (i = 1, 2, . . . , N). The formal initial i = 0 and terminal
i = N + 1 beads are assumed to be fixed, specifying the equilibrium bead position.

with respect to the pair of the nearest beads is sufficiently low. Otherwise,
especially if bead i is currently located near the optimal position, it has to
eliminate the relative velocity ϑi, representing the other stimulus for bead i to
change its state of motion. The model to be formulated below combines both
of these stimuli within one cumulative impetus ∝ (ηi + σϑi), where σ is the
relative weight of the second stimulus.

When, however, the relative velocity ϑi becomes less then a threshold θ, i.e.,
|ϑi| . θ, bead i is not able to recognize its motion with respect to the nearest
neighbors. Since a bead cannot “predict” the dynamics of its neighbors, it has
to regard them as moving uniformly with the current velocities. So from its
standpoint, under such conditions the current situation cannot become worse,
at least, rather fast. In this case bead i just “allows” itself to do nothing, i.e.,
not to change the state of motion and to retard the correction of its relative
position. This feature is the reason why such beads are called “lazy”. Below we
will use dimensionless units in which, in particular, the perception threshold is
equal to unity θ = 1.

Under these conditions the equation governing the system dynamics is writ-
ten in the following form

dvi
dt

= −Ω(ϑi)[ηi + σϑi + σ0vi] + εξi(t) . (1)

If the cofactor Ω(ϑi) were equal to unity, the given system would be no more
then a chain of beads connected by elastic springs characterized by the friction
coefficient σ. The term σ0vi with the coefficient σ0 � 1 that can be treated as a
certain viscous friction of the beads moving via a medium into which the given
system is embedded has been introduced to prevent the beads from attaining
extremely high velocities. The factor Ω(ϑi) is due to the effect of dynamical
traps and the ansatz

Ω(ϑ) =
∆+ ϑ2

1 + ϑ2
, (2)

is used, where the parameter ∆ ∈ [0, 1] quantifies the intensity of dynamical
traps. If 4 = 1, the dynamical traps do not exist at all, in the opposite case,
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4 � 1, their influence is pronounced inside the neighborhood Qi
tr of the axis

vi = (vi−1 + vi+1)/2 (the trap region) whose thickness is about unity (Fig. 1).
Model (1) allows for random factors in terms of white noise ξi(t) affecting the
motion of bead i with intensity ε so that

〈ξi(t)〉 = 0 and 〈ξi(t)ξi′(t′)〉 = δii′δ(t− t′) . (3)

For the terminal fixed beads, i = 0 and i = N + 1, we set

x0(t) = 0 , xN+1(t) = 0 , (4)

which play the role of the “boundary” conditions for equation (1).
It should be noted that the emergent phenomena in a similar system mim-

icking car following dynamics were considered for the first time in Refs [13,14].
In addition, the first experimental evidence of the dynamical traps caused by
the human fuzzy rationality seems to be obtained in hybrid human-computer
experiments of balancing a damped virtual stick [15].

3 Results of simulation

The dynamics of the given system was studied numerically. Initially all the
beads were located at the equilibrium positions {xi|t=0 = 0} and perturbations
were introduced into the system via ascribing random independent values to
their velocities. Equation (1) was integrated using the E2 high order stochastic
Runge-Kutta method [16]. The integration time step of 0.001 was used; the
obtained results were checked to be stable with respect to decreasing the inte-
gration time step tenfold. The integration time was equal to 105–106, which
enabled us to deal with the steady state dynamics. The other parameters used
in simulation were taken equal to ∆ = 10−3 and σ0 = 0.01. Besides, to simply
the data visualization the bead coordinates are shown with some individual
shifts, namely, xi → xi + 50 · i.

In order to analyze the dynamical trap effect on its own the noise absence
case was studied first. The system dynamics was found to depend on the in-
tensity of “dissipation” quantified by the parameter σ. We remind that the
parameter σ specifies the relative weight of the stimuli to take the middle “op-
timal” position and to eliminate the relative velocity; the larger the parameter
σ, the more significant the latter stimulus. When the parameter σ is not too
small the system tends to get the regime of regular dynamics represented by
a collection of limit cycles of individual bead motion. It should be noted that
these limit cycles could be of complex form when the number of beads is not
too large, namely, N . 10 [17]. Nevertheless for systems with large number
of beads the resulting phase portrait takes a rather universal form shown in
Fig. 2(left frame). However, the “time to formation” TN , i.e. the mean time
required for a given bead chain to get the steady state regular dynamics grows
exponentially as the number of beads increases. For example, for beads with
σ = 1 this time can be approximated by the function

TN ≈ Tc · exp {N/Nc} with Tc ∼ 60 and Nc ∼ 13 (5)
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Fig. 2. The characteristic phase portrait of the steady state dynamics exhibited by
systems without noise and not too weak “dissipation” (left frame). The chain of 30
beads with σ = 1 was used in constructing the shown pattern where the limit cycles
of each second bead are visualized. The right frame depicts the characteristic time
TN required for such a system to get the steady state dynamics vs the number N of
beads. The scatted points are the data obtained for each value of N on three trials,
σ = 1 was used in simulation.

(see Fig. 2(right frame)). On one hand, this strong dependence explains that
for chains of oscillators with not too weak “dissipation” only chaotic motion
was found when the number of beads becomes sufficiently large, N & 100 [17].
On the other hand, it enables us to pose a question about regarding the chaotic
dynamics of such systems for N →∞ as a certain phase state.

In the case of weak “dissipation” the system dynamics exhibits sharp transi-
tion to a stable chaotic regime as the coefficient σ decreases. It is demonstrated
in Fig. 3 showing the transition from the regular dynamics for σ = 0.1 to a
chaotic motion when σ = 0.09. As seen in Fig. 3 the chaotic portrait can be
conceived of as a highly chaotic kernel surrounded by fragments of the regular
limit cycle destroyed by instability.

Noise forces these systems to undergo two phase transitions as its intensity
ε increases. The first one can be categorized as the transition from the regular
bead motion to a cooperative chaotic bead motion. The latter means that
the beads correlate substantially with one another in motion but individual
trajectories are rather irregular and the magnitude of this irregularity cannot
be due to the present noise only. The second transition is determined by the
formation of highly irregular mutually independent oscillations in the bead
position. To illustrate the first phase transition Figure 4 depicts two phase
portraits of the middle bead motion for different values of ε. As seen, for
ε = 0.01 the phase portrait looks like a regular limit cycle disturbed by small
noise. In contrast, when the noise intensity increases by two times, i.e., ε =
0.02, the corresponding phase portrait becomes rather complex in form and
the volume of the phase space layer containing the shown trajectory as a whole
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Fig. 3. The phase portraits of the middle bead motion of the 5-bead chain for the
“dissipation” parameter σ taking the values 0.1 (left frame) and 0.09 (right frame).
The period of the shown limit cycle is about 200; the chaotic phase portrait was
obtained by visualizing the system motion within time interval about 5× 105.

sharply grows. Exactly the two features has enabled us to classify the found
effect as a phase transitions. It should be noted, that this phase transition
from regular motion to stochastic chaos, in contrast to the second transition to
highly irregular motion, does not manifest itself in the one-particle distributions
of all the variables x, v, η, ϑ ascribed to the beads individually, so, it could be
categorized as a “weak” phase transition.

4 Conclusion

The notion of dynamical traps was introduced to describe possible effects
caused by the bounded capacity of human cognition in ordering events or ac-
tions according to their preference. Its particular implementation is that human
beings as active elements of a certain system cannot individually control all the
governing parameters within the accuracy required for stabilizing the system
dynamics perfectly. Therefore one chooses a few crucial parameters and mainly
focuses attention on them. When the equilibrium with respect to these crucial
parameters is attained the human activity slows down, retarding in turn the
system dynamics as a whole.

By way of example, we considered emergent phenomena in chains of coupled
oscillators with dynamical traps. The motion of oscillating particles (beads) in
the phase space {xi, vi = ẋi} is assumed to be governed by their interaction via
effective elastic springs with viscous friction outside the dynamical trap region
Qtr. For a given bead i the dynamical trap effect is reduced to depressing its
interaction with the nearest neighbors i − 1 and i + 1 as the relative velocity



Chaotic Modeling and Simulation (CMSIM) 1: 31–38, 2013 37

5000 0 5000 10000
bead position

400

300

200

100

0

100

200

300

400
be

ad
 v

el
oc

ity
noise intensity ε=0.01

5000 0 5000 10000
bead position

400

300

200

100

0

100

200

300

400

be
ad

 v
el

oc
ity

noise intensity ε=0.02

Fig. 4. The phase portraits of the middle bead motion of the 30-bead chain with
σ = 1 for two values of the noise intensity ε = 0.01 and 0.02. In plotting these
portraits bead trajectories of motion during time interval about 2× 104 were used.

ϑi = vi − (vi−1 + vi+1)/2 becomes small in comparison with some threshold.
The introduction of additive white noise of intensity ε allows for possible un-
controllable factors also affecting the bead motion.

This system was studied numerically. As demonstrated, without noise the
system dynamics tends to the regime of regular bead motion if the friction co-
efficient is not too small. However, the characteristic time required for a given
system to get this regime grows exponentially with the number N of beads. It
enables us to pose a question about regarding the chaotic transient processes
as a certain phase state in the limit N →∞. When the friction coefficient be-
comes sufficiently small the steady state dynamics of such systems can undergo
transition to chaotic bead motion even for chains with small number of beads.
Depending on its intensity noise can induce the formation of three characteris-
tic phases, highly irregular individual oscillations of the beads, the cooperative
chaotic bead motion, and the synchronized regular bead motion. It should
be noted that the transition between the regimes of regular and cooperative
chaotic bead motion manifests itself only the sharp growth of the volume of the
phase space layer containing the bead trajectories, whereas all the one-particle
distribution functions does not change their forms remarkably.
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