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Abstract: This paper presents a peak-valley segmentation procedure for the wavelet-

based extraction of acceleration data. A 60-second acceleration signal was measured on a 

McPherson frontal coil spring of a 2000 cc Proton sedan car, and the data was used for 

the simulation. The Morlet wavelet-based analysis was used to extract higher amplitude 

segments in order to produce a shortened signal that has an equivalent behaviour. Using 

this process, it has been found that the Morlet wavelet was able to summarise the original 

data up to 49.45% with less than 10% difference with respect to statistical parameters. 

This clearly indicates that the Morlet wavelet can be successfully applied to compress the 

original signal without changing the main history as well. Finally, it has been proven that 

the Morlet wavelet successfully identified the higher amplitudes in the acceleration data. 
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1. Introduction 
Control and stability of a car entirely depend on the contact between the road 

surface and the tires [1]. The dynamic interaction between vehicle and road 

surface causes problems with respect to the vehicle structure and the ride 

quality. Collision between uneven road surfaces and tires gives a certain amount 

of vibration which contributes to mechanical failure of car components due to 

fatigue as the car structure was subjected to cyclic loading. This vibration also 

interfaces the function of the car suspension system and gives a great impact on 

the performance of the car [2-5]. 

According to Jinhee [6], car suspension systems experience vibration when is 

subjected to variable driving conditions leading to strain at this component. If 

this condition continues it will increase the probability of fatigue failure for the 

car suspension system. The problems arising have been solved by simulating the 

dynamic behaviour of a structural component on which the dynamic forces are 
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acting. Measured road surface profiles are generally considered as external 

disturbances acting through the automotive suspension system onto the vehicle 

body. Road surface profiles are usually used to describe the bumpiness of the 

road. Because of weakness of measuring equipment used, there is noise in the 

road surface profile data. Thus, the accuracy and reliability of the road surface 

profile is reduced. If the signal trends are not extracted from the input signal 

used, it will directly affect the test results, leading to inappropriate judgments 

and conclusions. Therefore, it is an important task that the signal trend is 

extracted and separated from the noise during road surface data processing [7]. 

Based on this background, methods for the signal trend extraction of road 

surface profile are introduced. At present, the popular methods for the signal 

trend extraction are: least-squares fitting, low-pass filtering, wavelet 

decomposition, empirical mode decomposition, etc., as reported in [7]. The 

objective of this work is to extract acceleration data in order to remove white 

noise in the data. In order to address the objective of the research, acceleration 

data is edited to produce shorter data while retaining its original characteristics. 

Therefore, a data editing technique is necessary for producing new modified 

signals as required. Continuous wavelet transform (CWT) has been applied to 

the digital signal processing algorithm. An algorithm for signal trend extraction 

of road surface profile has been developed by adopting a fatigue feature 

algorithm developed by Putra et al [8]. It is hypothesized that the pattern of an 

acceleration data is similar to the pattern of a fatigue signal. 

 

2. Literature Overview 
2.1. Global signal statistics 

Statistical parameters are used for random signal classification and pattern 

monitoring. Common statistical parameters that are directly related to the 

observation of the data behaviour are the mean value, standard deviation (SD), 

the root-mean square (r.m.s.), skewness, kurtosis and the crest factor (CF). From 

these parameters, the r.m.s. and kurtosis give significant effects to evaluate the 

randomness of the data [9]. The r.m.s. calculates the energy distribution, 

wherein higher r.m.s. indicates a higher energy content, which in turn indicates 

higher fatigue damage in the signal. On the other hand, kurtosis represents the 

continuity of peaks in a time series loading. The peaks also reveal higher fatigue 

damage, suggesting that a higher kurtosis indicates higher fatigue damage.  

The r.m.s. is the second statistical moment used for determining the total energy 

contained in a signal. The r.m.s. of signals with zero mean value is equal to the 

SD. The r.m.s. of discrete data can be calculated as follows: 
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In addition, kurtosis is the fourth statistical moment that is very sensitive to 

spikes and it represents the continuation of peaks in a time series loading. The 

kurtosis value of a Gaussian normal distribution is close to 3.0. Higher kurtosis 
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shows that the value is higher compared to the appropriate value in the Gaussian 

normal distribution, indicating that only a small proportion of data is closer to 

the mean value [10]. The kurtosis for a set of discrete data is formulated as: 
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2.2. Continuous Morlet Wavelet Transform 

The continuous wavelet transform (CWT) is conducted on each reasonable 

scale, producing a lot of data and is used to determine the value of a continuous 

decomposition to reconstruct the signal accurately [11]. The Morlet wavelet is 

one of the mother wavelets that are involved in the CWT, and it can be 

described by the following equation: 
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By dilation with a (scale factor) and translation with b (position), a son wavelet 

can be acquired [12]: 
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Wavelet decomposition calculates the resemblance index, also called the 

coefficient, between the signal being analyzed and the wavelet. Generally, the 

wavelet coefficient is expressed with the following integral [11]: 
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The Morlet wavelet coefficient indicates the distribution of the internal energy 

of the signal in the time-frequency domain [13]. The signal internal energy e can 

be expressed as: 
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2.3. Peak-valley segmentation-based signal extraction 

Fatigue damage is very sensitive to peak and valley in a time series loading. 

Thus, in the extraction, time series data needs to be converted in the form of 

peak-valley. For the development of the extraction algorithm, the input required 

was the distribution of the magnitude in the time domain obtained by the time-

frequency method. The distribution was decomposed into the time domain 

spectrum by taking the magnitude cumulative value for an interval of time. 
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A gate value was used for the extraction of the damage feature. The gate value 

was the energy spectrum variable that maintains the minimum magnitude level. 

Segments with magnitudes exceeding the minimum magnitude value were 

maintained, whereas the segments with magnitudes less than the minimum 

magnitude value were removed from the signal. The concept refers to the 

concept of the cut-off level used in the extraction in the time domain [14]. 

To obtain the optimum of the gate value, the maintained segments then were 

merged with each other to form a shorter modified signal, compared to the 

original signal. In the case of global signal statistical parameters, a difference of 

10% is used considering that at least 10% of the original signal contains a lower 

amplitude cycle leading to the minimum structural damage to obtain a final 

signal corresponding to the original signal [15]. 

 

3. Methodology 
Acceleration data measured at a McPherson frontal coil spring of a 2.000 cc 

Proton Wira sedan car was used for the current study. At the same time, strain 

data on the component was measured as well. The behaviour of both the 

acceleration and strain data was to be observed. According to Gillespie [16], the 

coil spring of a car at the similar brand of this research was made from 

SAE5160 alloy steel. Its properties are tabulated in Table 1 [17].  

 

Table 1. The mechanical properties of the SAE5160 alloy steel. 

 

Properties Values 

Modulus of elasticity, E (GPa) 207 

Density, ρ (kg/m
3
) 7.85 

Poisson’s ratio, ρ 0.27 

 

An accelerometer was placed at the location of the coil spring showing the 

highest stress concentration which was obtained through finite element analysis. 

The car was driven on a highway road surface at a velocity of 70 km/h. The 

original signal produced by the accelerator was a variable amplitude load 

sampled at 500 Hz and recorded using a data acquisition setup, as shown in 

Figure 1. 

 

 
Fig. 1. The data acquisition setup: (a) accelerometer, (b) PXI system. 

(b) (a) 
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4. Results and Discussion 
4.1. Acceleration data 

The collected data contained many small amplitudes and higher frequency 

patterns in the signal background. The data is a time domain signal measured at 

the coil spring sampled at 500 Hz for 30,000 data points. Therefore the total 

record length was 60 seconds. Based on the acceleration obtained, the data 

obtained revealed parts with higher amplitudes because the vehicle was driven 

on a bumpy surface. The original acceleration data, the Morlet wavelet 

coefficient and the signal internal energy are shown in Figure 2. 

 

 
Fig. 2. (a) acceleration data, (b) wavelet coefficient, (c) internal energy. 

 
4.2. Acceleration data extraction 

Various gate values were used in this extraction. The values were chosen 

because most of the magnitudes were below the gate value, whereas if the lower 

magnitude section was removed, it did not affect the damage relevance and the 

original properties of the signal. The gate values used were 4x10
-7

 µε
2
/Hz,  

5x10
-7

 µε
2
/Hz and 6x10

-7
 µε

2
/Hz. After the data was extracted, the retained 

energy containing higher signal internal energy was obtained. Furthermore, 

based on the time positions of the retained energy and referring to the original 

signal before the extraction, maintained segments were obtained. The 

extractions produced segments that were not uniform in length because the 
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Morlet wavelet algorithm extracted the time series based on the energy content 

of the signals. 

For this purpose, the retained segments were reattached into a single load to 

validate if the process satisfied the requirements in data editing, i.e., maintaining 

90% of the original statistical values. A verification process was done by 

comparing the statistical parameter values between the original and the modified 

signal. From the analysis of the modified signal, an optimal gate value was 

determined based on the gate value ability (refer to the modified signal) to 

produce the shortest signal with the minimum signal statistical parameter 

deviation. Figure 3 shows the differences in the length of modified signals from 

the extraction at various gate values. 

 

 

Fig. 3. Edited signals at: (a) 4x10
-7

 µε
2
/Hz, (b) 5x10

-7 
µε

2
/Hz, (c) 6x10

-7 
µε

2
/Hz. 

 

Based on Figure 3 above, at gate value of 4x10
-7

 µε
2
/Hz, data of 36.57 seconds 

shortened only by 39.05% and its r.m.s. and kurtosis became 2.68% and 5.45%, 

respectively. For a gate value of 5x10
-7

 µε
2
/Hz, the Morlet wavelet-based 

extraction resulted in a 30.33-second edited signal, which was 49.45% shorter 

than the original. The modified signal changed the r.m.s. and the kurtosis to 

3.41% and 8.21%, respectively. For a gate value of 6x10
-7

 µε
2
/Hz, the data was 

modified by 60.22% and changed the r.m.s. and kurtosis values became 5.14% 

and 10.98, respectively. 

Based on the results, 5x10
-7

 µε
2
/Hz was selected as the optimum gate value 

because at higher values, i.e. 6x10
-7

 µε
2
/Hz, the change in kurtosis reached 
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10.98%. It was detrimental the original properties of the signal. The 30.33-

second edited signal resulted at the optimum gate value experience increasing of 

the r.m.s. and kurtosis values. Increased r.m.s. indicated that the internal energy 

content of the signal also increased. Different kurtosis values showed the 

extraction method was capable of effectively removing lower amplitude while 

maintaining higher amplitude in the modified signal. In addition, at gate value 

of 5x10
-7

 µε
2
/Hz, it gives similar distribution of frequency spectrum and power 

spectral density, as shown in Figure 4. It shows the noise in the road surface 

profile had been removed. The data were successfully edited based on the 

relationship between the higher amplitude and the Morlet wavelet coefficients 

of the time-frequency domain obtained. This Morlet wavelet algorithm removed 

segments with magnitudes less than the gate value based on their positions on 

the time axis. 

 

Fig. 4. Original and edited signals: (a) length, (b) frequency spectrum,  

(c) power spectral density. 

   

5. Conclusion 
In this study, an experiment was conducted to collect data for the purpose of 

obtaining acceleration data to simulate the extraction algorithm. The 

acceleration data causes vibration that will increase the probability to the fatigue 

failure at car components. The extraction process yielded data on the damaging 

segments by identifying and extracting segments based on the coefficient 

distribution of the Morlet wavelet transform. The damaging segments were 
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combined to form shorter signals while maintaining original behaviours. 

Overall, the Morlet wavelet algorithm was able to shorten the signal up to 

49.45% but maintained more than 90% of the statistical parameters and gave 

similar distribution of power spectral density as original data. The extraction 

method was able to identify the structural damage values of each segment. 

Finally, this study proved that the Morlet wavelet is an appropriate technique to 

extract acceleration data, especially for the automotive applications. 
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