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Abstract. We study the absorbing invariant set of a dynamical system defined by
a map derived from Error Diffusion, a greedy online approximation algorithm that
minimizes the (Euclidean) norm of the cumulated error. This algorithm assigns a
sequence of outputs (each a vertex of the polytope) to any sequence of inputs in the
polytope. Here, the polytope is assumed to be a simplex that is acute, meaning that
the pairs of distinct external normal vectors to the codimension-one faces form obtuse
angles. The input is assumed to be constant. The map is a system which consists
of piecewise translations acting on the partition of an affine space into the Voronöı
regions defined (once tie-breaking is resolved) by the vertices of the polytope. The
translation vector in each partition piece is the difference between the input modified
by adding the cumulated error and the corresponding vertex.

When the polytope is a simplex such piecewise translation projects onto a trans-
lation of a torus. It is known that if the projected translation is ergodic, then the
invariant absorbing set of the piecewise translation is a fundamental set for the lattice
generated by the simplex. In this paper we study some sets which are important in
estimation the shape of this invariant set, and thus in the control of the rather erratic
behaviour of the algorithm in the invariant set.

1 Introduction

We shall investigate a dynamical system derived from an algorithm called error
diffusion used, e.g., in digital color printing (for motivation and background
see Section 5).

Main result

Let A be an d dimensional real affine space whose associated vector space V
is equipped with the usual scalar product and Euclidean metric. Let P be
a polytope in A with the set C = {v0, . . . , vr} of vertices (extreme points) of
which it is the convex hull. From the sequence of points g(N) ∈ P called inputs
the Error Diffusion Algorithm (EDA) provides a sequence of vertices v(N) ∈ C
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with close (due to boundedness) Cesaro means as follows. Define the cumulative

error eN =
∑N

n=1(g(n) − v(n)). Then e(N) = x(N) − v(N), where x(N) =
e(N − 1) + g(N), e(0) = 0 and v(N) = v(x(N)) is chosen to be the vertex that
minimizes ||e(N)||. It follows that x(N + 1) = x(N)+g(N)−v(x(N)). If there
are several minimizing vertices vi we apply some tie-breaking rules to assign
v(x(N)). One such rule consists in taking the vertex of smallest index among
all that minimize the norm.

All points x ∈ A with the same v(x) = vk ∈ C form a Voronöı domain Vk,
with well defined interior and closure, while the boundary points are decided
by the tie-breaking rules.

Vk = {y ∈ A : ||y − vk||2 ≤ ||y − vi||2, i = 0, . . . , r} . (1)

The Voronöı domains form a partition of A. The EDA can be represented by a
dynamical system F on the space A, which in case of the the case of a constant
input g ∈ P is defined by:

F(x) = Fg(x) = g + x− v(x) where v(x) = vk iff x ∈ Vk . (2)

The map F is a piecewise translation with the parameter g.1

In this paper we will consider the case of a constant input g ∈ P, where P
is a simplex with d+ 1 vertices such that the vectors (vi − v0)i6=0 form a basis
of the vector space V .

We shall assume that this simplex 4(v) is acute (Definition 24), i.e., that
any pair of external normal vectors to distinct codimension-one faces forms an
obtuse angle.

The simplex generates a lattice L = {
∑

i nivi :
∑

i ni = 0, ni ∈ Z} ⊂ V
and the space A/L of equivalence classes [x] = {y ∈ A : x − y ∈ L} is a d-
dimensional torus. The map F projects to a well defined translation [F ] of the
torus. We will call the input parameter g ergodic if the toral translation [F ]
is ergodic (cf. [15]). We say that the set T ⊂ A is a tile for the lattice L if
it projects bijectively to the torus, or equivalently if for each x ∈ A there is a
unique y ∈ T such that y − x ∈ L.

We are interested in the asymptotic behavior of the iterates FN of F ,
where F0 = F and FN+1 = F ◦FN . The set Q is absorbing if each trajectory
eventually enters it and then never leaves. We have proven elsewhere [6] that:

Theorem A (Ergodic Inputs) The error diffusion map F with ergodic in-
put on acute simplex has an absorbing invariant bounded tile for the lattice L
generated by the simplex.

Remark 11 We conjectured that both acuteness and ergodicity assumptions
are irrelevant. Our approach relied on geometry of the problem, which is dif-
ferent in acute and obtuse cases. Already in two dimensions obtuse triangles

1 The case of nonconstant inputs gN can be represented by a map on the much larger
space A×PZ , with

F(x, g) = (x+ g0 − v(x), σ(g)) ,

where σ is the shift operator on the sequence g = (· · · , g−1, g0, g1, · · · ).
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produce sometimes disconnected absorbing invariant set (it seems they are still
tiles), while acute ones produce only connected tiles. Ergodicity, a typical con-
dition, enables an elegant proof that the invariant set is indeed one tile, without
it our approach can only prove that this set is a finite union of disjoint tiles.

In the follow up work [7] we described the invariant tile in more details and in
particular proved:

Theorem B (Sub Tiles) Under the assumptions of Theorem A each inter-
section of the invariant tile Q with the Voronöı domain Vi and each union
of such intersections is a tile for another lattice (expressed explicitly in terms
of g and the collection of vertices vi). More precisely if we assume 0 ∈ I ⊂
{0, 1 . . . , d} then QI = Q∩

⋃
i∈I Vi is a tile for the lattice Z((g− vj)|j 6∈I , (vi−

v0)|i∈I).

Remark 12 The ergodicity assumption is not needed in dimension d = 2,
see [5]. In higher dimensions, even in a non-ergodic case, if the trajectories on
the torus are sufficiently dense then the proofs of both Theorems remain valid.

For the sake of completeness we provide the sketches of the proofs of those
Theorems at the end of Section 2

Here, assuming acuteness but not ergodicity, we study the following, natural
in context, set:

H =
⋂
i

F(Vi) . (3)

The setH in the ergodic case is mapped in finitely many steps onto the invariant
tile and thus provides the following Theorem, the main result of this paper:

Theorem C Under the same assumptions the invariant tile is a (possibly non
convex) polytope.

We also present the connections between the set H and the Voronöı cells, i.e.,
the Voronöı regions of the lattice L.

2 Preliminaries

We recall that in the affine space A the difference of two points is a vector (of
the vector space V associated to the affine space) whence the sum of a point
and a vector is a point.

2.1 Simplices and barycentric coordinates

Besides the standard simplex

4 = {ξ = (ξ0, . . . , ξd) ∈ Rd+1 :
∑

ξi = 1, ξi ≥ 0} (4)

in the affine space {ξ ∈ Rd+1 :
∑
ξi = 1} modeled over the vector space

{ξ ∈ Rd+1 :
∑
ξi = 0} we will also consider more general full dimensional

simplices in a d dimensional real affine space A.
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Fig. 1. Simulation of limit sets for two “inputs” g in an equilateral triangle. The
parts (“sub-tiles”) inside the three Voronöı regions are shaded differently. The limits
sets are tiles (Theorem A) for the triangle generated lattice and each part and also
each pair of parts tiles the space (Theorem B).

Remark 21 (Solving equations) From independence of v it follows that for
any k and any collection of d numbers βi with i 6= k, the system of d equations:
r · (vi − vk) = βi, i ∈ {0, 1, . . . , d} \ {k}, has a unique (vector) solution r. This
solution can be found using dual basis. If bi, i 6= k are vectors dual to vi − vk,
i 6= k (that is bi · (vj − vk) equals 0 for j 6= i, and equals 1,when j = i) then
r =

∑
i6=k β

ibi. With the scalar product the dual vectors are naturally embedded
in the same space as the basis (vi − vk)i6=k.

Definition 21 (Simplex) A (closed) simplex in A is the convex hull of a
collection of points vi, i = 0, . . . , d such that (vi − v0)i 6=0 form a basis in V :
4(v) = {x =

∑
ξivi :

∑
ξi = 1, ξi ≥ 0}.

By definition of the simplex A is a minimal affine space containing all the
points v.

Remark 22 Every point x ∈ A can be uniquely represented by its barycentric
coordinates ξi ( derived from the simplex 4(v)): x =

∑
ξivi,

∑
ξi = 1.

We shall represent the input, a fixed point g ∈ 4◦(v) (interior) by its barycen-
tric coordinates:

g =
∑

γivi, γi > 0,
∑

γi = 1 . (5)

Remark 23 In the space A = {(ξ0, . . . , ξd) ∈ Rd+1 :
∑
ξi = 1} the barycen-

tric coordinates derived from the standard simplex (4) are the same as the
standard Cartesian ones.

2.2 Acuteness

If A1 ⊂ A2 are affine spaces with respective dimensions d1 ≤ d2, and Q is a
polytope in A1 not contained in any smaller affine space, then d2 − d1 is the
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codimension of Q in A2, or simply the codimension of Q when the space A2 is
unambiguous. The dimension of the set is here understood as the dimension
of the minimal affine subspace containing this set.

Definition 22 (Face) The face Fk of the simplex 4(v) opposite to the vertex
vk is the codimension one simplex Fk = {

∑
ξivi : ξk = 0, ξi ≥ 0,

∑
ξi =

1} lying in the affine space Ak = {
∑
ξivi : ξk = 0,

∑
ξi = 1}.

Definition 23 (External normal vector) The external normal vector sk
to the face Fk is the unique vector such that the scalar products satisfy the
normalization condition:

sk · (vj − vk) = 1 for any j 6= k , (6)

We choose this normalization to simplify future calculations. In particular for
i, j 6= k we have (normality) sk · (vj−vi) = 0. Trivially sk · (vj−vk) ≥ 0 always
holds.

Definition 24 (Acuteness) We say that a simplex is acute (face-wise ac-
cute) if

si · sj < 0 whenever i 6= j . (7)

Remark 24 (Edge-wise acuteness) There is a weaker condition to (face-
wise) acuteness in Definition 24 that we call edge-wise acuteness:

∀k, l 6= i (vj − vi) · (vk − vi) > 0 , (8)

which follows from the acuteness.

2.3 Forward invariance

Definition 25 (Invariant sets) We say that a set is (forward) invariant
with respect to the transformation F if F(Q) ⊂ Q.

Definition 26 (Absorbing sets) We say that the set Q is absorbing if for
every point x in A there is an N (= N(x)) such that for every M ≥ N FM (x) ∈
Q.

2.4 Lattices and Tiles

Definition 27 (Lattice) For the points vi ∈ A the lattice L = L(v) is a
subgroup of the vector space modeling A, generated by the vectors vi − vj, that
is for any k: L = L(v) = {

∑
i6=k n

i(vi − vk), ni ∈ Z}.

In this definition the fact that the lattice does not depend on the choice of k
can be expressed in a symmetric way as L = {

∑
nivi : ni ∈ Z,

∑
ni = 0}.

Definition 28 Given a set Q and a lattice L consider the map Q+L : Q×L→
A given by: (q, r) 7→ q + r. We will say that Q + L is:
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1. surjective if this map is surjective, i.e., for every point x ∈ A there are
q ∈ Q and r ∈ L such that x = q + r.

2. injective if this map is injective, i.e., if q + r = q′ + r′ then q = q′ and
r = r′.

3. bijective if it is both surjective and injective.

Definition 29 (Tile) We say that a set Q is a tile for the lattice L if Q + L
is bijective.

In other words all lattice translates of Q cover the whole space A without
overlaps. If Q is a tile that has some minimal topological regularity it is
sometimes called a fundamental domain of the group L.

Definition 210 (Equivalent Points) We say that the points x and y are
equivalent (with respect to the group L) if y − x ∈ L.

Remark 25 (F projects on the torus) In the case of an independent and
full dimensional collection of points the quotient space A/L of classes of equiv-
alent points [x] is a d-dimensional torus. The map F projects on a translation
(in cube model) on this torus (or the rotation in exponential model on the prod-
uct of unit circles), [F ]([x]) = [F(x)]. In other words x and y are equivalent
iff F(x) and F(y) are. This is due to the fact that all the translation vectors
g − vi project on the same vector on the torus.

Proof. Suppose that [x] = [y] then x − y ∈ L. Thus F(x) − F(y) = (x +
g − v(x)) − (y + g − v(y)) = (x − y) + (v(y) − v(x)) ∈ L which means that
[F(x)] = [F(y)].

2.5 Sketch of the proof of Theorem A

We construct a large set, in fact a simplex 4B , which, due to acuteness, turns
out to be forward invariant and absorbing. Inside this large simplex there
lies a smaller open set (also a simplex 4R) the point of which do not have
distinct equivalent points in the large simplex. We shall project the sets and the
trajectories onto the torus and, due to ergodicity of the input, we shall conclude
that there is indeed an absorbing invariant set inside the large simplex which
projects bijectively on the the torus hence it is an invariant absorbing tile.

Define O to be the center of the sphere circumscribing the simplex 4(v),
that is the unique point satisfying the equations: (vi −O)2 = (vj −O)2 for all
i, j = 0, . . . , d. Next define the points w:

wk = O + g − vk , (9)

which form the Inverted Simplex :

4R = 4(w) = {
∑

ξiwi : ξi ≥ 0,
∑

ξi = 1} (10)

Finally define the points u:

uk = wk +
∑
i

(wi − wk) , (11)
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which and form the Big Simplex :

4B = 4(u) = {
∑

ξiui : ξi ≥ 0,
∑

ξi = 1} (12)

We use the following results from [6]:

• Under acuteness condition for 4(v) the Big Simplex 4B is invariant and
absorbing under Fg.
• The Inverted Simplex is contained in the Big Simplex.
• The points in the interior of the Inverted Simplex do not have distinct

equivalent points in the Big Simplex.

Construction of the invariant set Q. Consider Q0 = 4◦R ⊂ 4B , the
interior of the inverted simplex. Let QN+1 = Q0 ∪ F(QN ). Then {QN} is
an increasing family of sets that has a limit Q =

⋃∞
N=0 QN =

⋃∞
N=0 FN (Q0).

Due to to the invariance of 4B under F we have Q ⊂ 4B . By construction
F(Q) ⊂ Q, which makes Q invariant and not containing distinct equivalent
points.

The set Q contains a tile. When we project Q onto the torus A/L,
we see that the projection is an invariant set containing an open set, hence by
ergodicity the projection must contain the whole torus. That means that Q
itself must contain a tile. We proved that Q contains a tile but no distinct
equivalent points, thus it is a tile for the lattice L, invariant with respect to F .

The set Q absorbs all trajectories. Any trajectory must enter the
absorbing set 4B . Once there, because of ergodicity, the projection of every
trajectory must pass through the projection of Q0, the interior of 4R. Because
there are no points in 4B which project there, other than 4R itself, we con-
clude that every trajectory from 4B must pass through Q0, and once there, it
remains in Q.

2.6 Sketch of the proof of Theorem B

We show here only the case of I = {0}, all other cases have similar philosophy
but the calculations are more difficult. We want to show that for any point
P ∈ A there is a point q ∈ QI and a vector r ∈ LI = Z(g−vk, k 6= 0) such that
P = q+r uniquely. Because Q is a tile then P = x+

∑
kmk(vk−v0), uniquely

where x ∈ Q, mk ∈ Z. For any zQI = Q ∩ Vi ⊂ Q and any n ∈ Z there
is a point q = q(z, n) ∈ QI and N ∈ N such that if n > 0 then FN (q) = z
and card{i < N : F i(w) ∈ QI} = n and if n < 0 then FN (z) = q and
card{i < N : F i(z) ∈ QI} = |n| = −n. Then for some nonnegative integers
pk in the first case z = q + n(g − v0) +

∑
k 6=0 pk(g − vk) and in the second

case q = z + |n|(g − v0) +
∑

k 6=0 pk(g − vk). This follows the properties of
the ergodic toral translations and the fact that F i sa bijection on the tile Q.
Choose z and M such that FM (z) = x and F i(z) 6∈ QI , 0 < i < M , then
x = z + g− v0 +

∑
k 6=0 nk(g− vk). Then P = x+

∑
k 6=0mk(vk − g+ g− v0) =

z+
∑

k 6=0 nk(g−vk)+
∑

k 6=0mk(vk−g+g−v0) = z+
∑

k 6=0 nk −mk(g−vk)+∑
k 6=0mk(g − v0). Let n = −

∑
k 6=0mk and take w = w(z, n). Then in any

case P = q −
∑

k 6=0mk(g − v0)±
∑

k 6=0 pk(g − vk) +
∑

k 6=0 nk −mk(g − vk) +∑
k 6=0mk(g − v0) = q +

∑
k 6=0 nk −mk ± pk(g − vk) ∈ QI + LI . Uniqueness

follows from uniqueness of q(z, n), x and mk.
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3 Proof of Theorem C

The set H =
⋃

i F(Vi), is a convex polytope with boundaries parallel to the
co-dimension one planes which contains the boundaries of the Voronöı regions.
More precisely, Vi is an intersection of closed half spaces bounded by hyper-
planes Mij = {x : (x − (vi + vj)/2) · (vj − vi) = 0} orthogonal to the edges.
The common point of all Mij ’s exists and is equal to the center O. There-
fore H, as F|Vi

consists of one translation, is the intersection of half spaces
Ai,j = {x : (x−wi) · (vj − vi) ≤ 0}, as wi is the image of O under the transla-
tion by g−vi, which acts on Vi. Each boundary Mij is mapped by two vectors
g − vi and g − vj producing two hyperplanes passing respectively through wi

and wj and forming a band of width ||vi − vj ||. The intersection of all such
bands is bounded, as the edges span the space V , and has d(d+1) codimension
1 faces pairwise parallel to Mij ’s. For d = 1 it is an invariant interval, for d = 2
it is a hexagon, a tile for the lattice L, but not necessarily invariant. For d > 2
the set H contains a tile, but is usually larger than one.

Lemma 31 For any n, Fn(H) is a polytope with boundaries parallel to hyper-
planes Mij.

Proof. The boundaries of Fn(H) are formed by translation of either boundaries
of Fn−1(H) or by translations of discontinuities that is boundaries of Vi’s which
lie in Mij ’s.

Lemma 32 Under ergodicity assumption there is an N such that FN (H) = Q.

Proof. If follows from the general fact that for any bounded set with non empty
interior after (a) a finite number of steps this set is mapped into 4B and then
(b), by ergodicity it is mapped onto Q.

The two previous Lemmata prove Theorem C.
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Fig. 2. The set H. For different inputs g and f the sets are translates of each other
by f − g. The iterates FNH make the set non-convex.
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4 Properties of the intersection of the images of the
Voronöı regions

In this section we investigate further properties of the set H, assuming only
acuteness of the simplex but not ergodicity of the input.

4.1 The Voronöı cell of a lattice

Given a lattice L we call the Voronöı cell of a point g a set of all points which
are closer to g than to any its lattice translates.

V = V(g) = {x : (x−g)2 ≤ (x−(g+r))2 ∀r ∈ L} = {x : (x−(g+
1

2
r))·r ≤ 0∀r ∈ L} .

The cell V is closed and convex and it is a closure of a tile for L with which
it shares the interior, in other words the tile differs from V by some boundary
points.

4.2 Arbitrary dimension d

As Vi = {x : (x − vi)2 − (x − vj)2 = 2(x − O) · (vj − vi) ≤ 0,∀j}, we have
F(Vi) = {x : ((F|Vi

)−1(x)−O) · (vj − vi) = (x− g+ vi−O) · (vj − vi) ≤ 0,∀j}
and finally

H = {x : (x− wi) · (vj − vi) ≤ 0,∀j, i} . (13)

Lemma 41

H = {x : (x− g)2 ≤ (x+ (vi − vj)− g)2,∀i, j}

Proof.

(x−g)2−(x+(vi−vj)−g)2 = 2(x−g)−vi−vj+2vi)·(vj−vi) = 2(x−g−O+vi)·(vj−vi)

Corollary 42 The set H contains a tile, which is a Voronöı cell of the point
g in the lattice g + L.

Proof. The set H is contained in a set defined by the same inequalities as V
but with r restricted to the edges r = vi − vj .

Each Vk is a cone with vertex O and edges si, i 6= k and has d co-dimension 1
faces with external normal vectors vi − vk, i 6= k.

Lemma 43 For every i, j we have wj ∈ F(Vi).

Proof. Consider the point wij = wj − g+ vi = O+ vi− vj . Then (wij − vi)2 =
(O − vj)2 and (wij − vi)2 − (wij − vk)2 = (2(vi − vj)(vk − vi), where we used
the properties of O. By edgewise acuteness that proves wij ∈ Vi, but then
F(wij) = wij = g − vi = wj .

Each F(Vk) is an affine cone with the vertex at wk = O + g − vk and as
wk ∈ F(Vi) for all i it is a vertex of the set H.



12 Adler et al.

Lemma 44 (H is symmetric) The convex set H is centrally symmetric with
respect to the point g. In particular g ∈ H.

Proof. Convexity is trivial. If x ∈ H then (x − wi) · (vi − vj) ≤ 0, for all i, j.
For the symmetric point 2g − x we have

(2g − x− wi) · (vj − vi) = (g +O − vj − x− 2O + vj + vi) · (vj − vi)
= (wj − x) · (vj − vi) = (x− wj) · (vi − vj) ≤ 0

because we can switch the indices i and j in the condition for x ∈ H.

By symmetry each point mk = −O + g + vk is also a vertex of H. Let us
formulate it and prove directly.

Lemma 45 In an edgewise acute simplex every point wl and every point mi

is a vertex of the set H.

Proof. We have (wl −wj) · (vk − vj) = (vj − vl) · (vk − vj) ≤ 0 and (mi −wj) ·
(vj − vk) = (vi + vj − 2O + vk − vk) · (vj − vk) = (vi − vk) · (vk − vj) ≤ 0.

In dimension d = 1 we have H = [m0,m1] = [w1, w0], which is an invariant tile.
In dimension d = 2 of H is a centrally symmetric hexagon with alternating
vertices w and m (a degeneration to a rectangle is possible if the triangle is
not strictly acute). It is a tile but usually not invariant. In higher dimensions
there are many more vertices of H and we shall describe the shape of it in some
details.

For fixed two indices

k, j ∈ J = {0, . . . , d} define Jkj = J \ {k, j}

Proposition 46 (Faces of H) In edgewise simplices each co-dimension 1 face
of H is uniquely determined by a pair of points wk and mj with k 6= j and is
included in a co-dimension 1 parallelepiped Pkj given by the intersection of two
cones:

Pkj = {wk +
∑
i∈Jkj

λisi, λi ≥ 0} ∩ {mj −
∑
i∈Jkj

µisi, µi ≥ 0}

= {wk +
∑
i∈Jkj

λisi, 0 ≤ λi ≤ Λi
kj = (vk − vi) · (vj − vi)} .

We shall call the face of H contained in Pkj by Hkj .

Proof. The faces of H are contained in the translates of the faces of Vk. For
each k there are d such faces, with an external normal vectors vj − vk, j 6= k.
More precisely, with an equivalent characterization of Voronöı regions as normal
cones, such a face of Vk is a cone itself {O +

∑
i∈Jkj

λisi, λ
i ≥ 0}. Hence the

co-dimension 1 faces of H are contained in the cones {wk+
∑

i∈Jkj
λisi, λ

i ≥ 0}.
There are no other co-dimension 1 faces created by the intersections of F(Vk).
By symmetry the faces are also included in the cones {mj−

∑
i 6=j,k µ

isi, µ
i ≥ 0}.
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As wk −mj = 2O − vk − vj is orthogonal to vj − vk it follows that both wk

and mj lie on the same face which is included in the intersection of the two
cones. If x ∈ Pkj then the two representations of x give rise to the equation∑

i∈Jkj
(λi(x) + µi(x))si = mj − wk = (vk + vj − 2O). After multiplying

both sides by vk − vl we get λl + µl = (vj − vl + vl + vk − 2O) · (vk − vl) =
(vj − vl) · (vk − vl) = Λl

kj , and the estimate on λ (and µ) follows from λ, µ ≥ 0.

Corollary 47 The 2d−1 vertices of Pkj are given by all subsets of indices I ⊂
Jkj, namely:

P I
kj = wk +

∑
i∈I

Λi
kjsi .

If we denote by Ic = Jkj \ I then also:

P I
kj = mk −

∑
i∈Ic

Λi
kjsi .

In particular P ∅kj = wk and P
Jkj

kj = P ∅
c

kj = mj . The vertices adjacent to wj are

P
{i}
kj = wk + Λi

kjsi and the vertices adjacent to mj are P
{i}c
kj = mj − Λi

kjsi.

Not for all subsets I the points P I
kj are the vertices of H.

Lemma 48 The vertices P
{i}
kj adjacent to wk belong to H if and only if Λi

kj =

minl Λ
i
kl. Similarly the vertices P

{i}c
kj adjacent to mj belong to H if and only if

Λi
kj = minl Λ

i
lj. In particular P

{i}
kj 6∈ H, i ∈ Jkj = J \ {k, j} if and only if for

some l ∈ J \ {k, j, i}, P {l}
c

kj 6∈ H

Proof. The set H near wk has d edges in the directions of si, i 6= k. If P =
wk + λsi ∈ H, each edge belonging to d − 1 faces Pkj . Then P ∈ ∩jPkj and
therefore 0 ≤ λ ≤ Λi

kj for all j ∈ Jki. On the other hand the maximal such
λ produces a point lying below (or on) all the faces and hence in H. The

statement for mj follows from symmetry. Hence if P
{i}
kj 6∈ H then for some l:

0 < Λi
kj − Λl

kj = (vk − vi) · (vj − vi)− (vk − vi) · (vl − vi)
= (vk − vi) · (vj − vl) = (vj − vl) · (vk − vl)− (vj − vl) · (vi − vl)
= Λl

kj − Λl
ij .

which means that Λl
kj was not minimal hence P

{i}
kj = mj − Λl

kjsl 6∈ H.

4.3 Dimension d = 3

In dimension 3 previous Lemma can be checked by calculations.

Corollary 49 When d = 3 the point P
{i}
kj is a vertex of H if and only if

(vk − vi)(vj − vl) ≤ 0.
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Proof. We will check the conditions (13) for arbitrary indices a 6= b:

(P i
kj − wa)(vb − va) = (wk − wa + Λi

kjsi)(vb − va)

= (va − vk)(vb − va) +


Λi
kj when a = i

−Λi
kj b = i

0 a, b 6= i

If a 6= i then both terms are non positive. In case a = i, and then b 6= i, we
have (vi − vk)(vb − vi) + (vk − vi)(vj − vi) = (vi − vk)(vb − vj) which can be
positive only when b = l which means that (vi − vk)(vl − vj) > 0 is the only

condition when P
{i}
kj 6∈ H.

Remark 41 Previous Lemma has the following geometric meaning in dimen-
sion d = 3. The twelve faces Hkj lie on the parallelograms Pkj with edges in
directions si and sl, with {i, j, k, l} = {0, 1, 2, 3} = J . If Hkj 6= Pkj then one

of the points P
{i}
kj or P

{l}
kj was cut off, suppose it was the former. But then we

have also P
{l}c
kj 6∈ H (as there is no other choice of index left). Incidentally in

dimension d = 3 we have P
{i}
kj = P

{l}c
kj . That means that this corner of Pkj was

cut off and an additional edge of H was created. But we know the endpoints of

this edge, those are P
{i}
kl and P

{l}c
ij .

We see that the condition of the face Hkj to have an extra edge is expressed
as either by

• (vk − vi) · (vl − vj) < 0,

in which case the vertex P
{i}
kj = P

{l}c
kj of Pkj is cut off by the additional

edge [P
{i}
kl , P

{l}c
ij ], or by

• (vk − vl) · (vi − vj) < 0,

in which case the vertex P
{l}
kj = P

{i}c
kj of Pkj is cut off by the additional

edge [P
{l}
ki , P

{i}c
kj ].

In dimension d = 3 for any k there are three products which indicate the
length of edges in the direction of sk, namely (vi−vk)·(vj−vk), (vj−vk)·(vl−vk)
and (vl−vk)·(vi−vk), depending on the order of those numbers they determine
the number of the edges of the faces of H. Suppose that (vi − vk) · (vj − vk) <
(vj − vk) · (vl − vk) < (vl − vk) · (vi − vk). Then the edge in the direction of
sk between the faces Hij and Hil has length (vi − vk) · (vj − vk) and hence the

face Hij contains the point P
{k}
ij and no additional edges at this side, while the

face Hil contains an additional edge and this side.

Lemma 410 In dimension d = 3 the face Hij of H is a tetragon (a quadrilat-
eral, in fact a parallelogram) iff for k, l 6= i, j if for any a 6= b

(vi−vk)·(vj−vk) = min
a,b6=k

(va−vk)·(vb−vk) and (vi−vl)·(vj−vl) = min
a,b6=l

(va−vl)·(vb−vl)

The face is a hexagon when we exchange the min by the max and a pentagon
if the products are both the middle numbers in the corresponding three products
order.
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Proof. Below we consider only the edges in the direction of sk. Consider the
edge sk on the face Hij from the point wi and the parallel one from the edge
mj , then the second one coincides (at least partially) with the edge of the face
Hlj which has a parallel edge at point wl a partial common to the face Hli.
Suppose that (vi − vk) · (vj − vk) < (vj − vk) · (vl − vk) < (vl − vk) · (vi − vk).
Then the first inequality does not produce the additional edge on the face Hij

but does on the face Hlj . Similarly the second inequality does not produce the
additional edge on Hlj but does on Hil. That makes the face Hlj a pentagon,
while using the symmetric argument to the faces Hij , Hil and Hjl we deduce
that the face Hij has no additional edges and thus is a tetragon. By central
symmetry (or by exchanging the role of i and j) the face Hji is a tetragon, the
face Hjl is a pentagon and the faces Hil and Hli acquire additional edges from
both directions, that is they are both hexagonal.

It is interesting to see that one condition is enough, in fact if

(vi − vk) · (vj − vk) < (vj − vk) · (vl − vk) < (vl − vk) · (vi − vk)

then

(vi − vl) · (vj − vl) < (vk − vl) · (vi − vl) < (vj − vl) · (vk − vl)

First inequality of the top chain is equivalent to (vi − vl) · (vj − vk) < 0 the
second one is equivalent to (vl − vk)(vj − vi) < 0. First inequality of the
bottom chain is equivalent to (vi − vl) · (vj − vk) < 0 and the second one to
(vk − vl) · (vi− vj) < 0. That means that if (vi− vk) · (vj − vk) is minimal so is
(vi−vl)·(vj−vl) and Hij is a tetragon. Similarly if we reversed the inequalities
we would have Hij a hexagon. That implies that if (vi− vk) · (vj − vk) were in
the middle so must have been also (vi − vl) · (vj − vl), and the face would be a
pentagon.

The product condition involves a pair of edges of the original simplex that have
no point in common. In dimension d = 3 there are three such pairs, and their
products are not independent.

Lemma 411 (Opposite edges condition)

(vi − vj)(vk − vl) + (vi − vk)(vl − vj) + (vi − vl)(vj − vk) = 0

Proof. Adding 0 = vj − vj to each first factor we obtain (vi− vj)(vk− vl + vl−
vj + vj − vk) + (vj − vk)(vl − vj) + (vj − vl)(vj − vk) = 0

Remark 42 (Opposite edges convention OE) After permuting the indices
we shall always assume the following opposite edge conditions.

OE1 : (v0 − v1)(v2 − v3) ≥ 0

OE2 : (v0 − v2)(v3 − v1) ≥ 0

OE3 : (v0 − v3)(v1 − v2) ≤ 0

By Lemma 411 either all three products are zero or the last one is negative.
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Remark 43 The following gives a geometric interpretation of the orthogonal-
ity of opposite edges in dimension d = 3:
Let hi denote the altitude of a simplex from the vertex vi, that is a segment
from vi to its orthogonal projection onto the affine subspace containing the face
Fi. If (v0 − v1)(v2 − v3) = 0 then h0 ∩ h1 6= ∅ and h2 ∩ h2 6= ∅. If two of the
conditions (and thus all three) are zero then all the altitudes meet at one point.

Proof. Let M be a two dimensional plane orthogonal to the edge (v2, v3) and
passing through the point v0. Then M contains all the segments orthogonal
to this edge and passing through v0 in particular it contains the edge (v0, v1)
and the altitude h0 which is orthogonal to the face F0 containing (v2, v3). It
contains also h1 which is orthogonal to F1 containing (v2, v3). The intersection
of this plane with the simplex form a triangle, whose two altitudes are h0 and
h1 meet at one point. The statement about h2 and h3 is proven in a similar
way.

From previous considerations there follows:

Proposition 412 (Structure of the faces of H in case d = 3)

1. When all three opposite edge OE conditions are not zero the twelve faces
of H consist of:
four tetragons (quadrilaterals, more precisely parallelograms)ruled by OE2
and OE3: H01,H23,H10,H32,
four hexagons ruled by OE1 and OE3: H02,H13,H20,H31, and
four pentagons ruled by OE2 and OE1:H03,H12,H30,H21.
In this case the eight points (from the tetragons) with lower indices 01 and
23 (in both orders and both possible upper indices) and the four points (from

pentagons) P
{1}
03 , P

{3}
21 , P

{2}
30 , P

{0}
12 are the remaining vertices of H.

There are six edges (additional to the 24 edges in the direction of s vec-
tors attached to the points w and m): two common faces of two pairs of

pentagons (P
{2}
01 , P

{2}
23 ) and (P

{3}
10 , P

{1}
32 ) (ruled by OE2), and four edges

common to pairs of hexagons: (P
{2}
30 , P

{3}
21 ), (P

{0}
12 , P

{1}
03 ) (ruled by OE1),

and (P
{0}
32 , P

{3}
01 ), (P

{2}
10 , P

{1}
23 ) (ruled by OE3). Of the additional edges of

the hexagons the first and the second connect the tetragons, while the third
and the fourth connect the pentagons.
We have 12 faces, 12 edges from the points w in the direction of the vectors
s, 12 edges from the points m in the direction of the vectors −s and 6 addi-
tional edges, making 30 edges total, and we have 4 w vertices, 4 m vertices
and 12 P vertices making 20 vertices total. Each vertex has three edges,
the P points have each one s edge, one −s edge and one edge to another P
point.

2. A typical bifurcation can occur uniquely by changing the sign of either OE1
and then the hexagons become pentagons and pentagons become hexagons
or by changing the sign of OE2 and then the pentagons become tetragons
and tetragons become pentagons.



Chaotic Modeling and Simulation (CMSIM) 1: 3–26, 2015 17

3. When the condition OE1 is zero then the hexagons become pentagons re-
sulting in four tetragons and eight pentagons.
The third and fourth hexagonal edges collapse to one point each, producing
two vertices with four edges collecting four pentagons around such a vertex.
That gives 12 faces, 28 edges and 18 vertices. It is not a tile.

4. When the condition OE2 is zero then the pentagons become tetragons re-
sulting in eight tetragons and four hexagons.
The pentagonal edges collapse to one point each, producing two vertices
with four edges collecting four tetragons.
That gives 12 faces, 28 edges and 18 vertices. Then the set H is a tile. It
is a hexa-rhombic dodecahedron.

5. When all three condition are zero then each additional edge collapses to a
point, leaving six vertices with four edges.
Each face becomes a tetragon. That gives 12 faces, 24 edges (no additional
ones) and 14 vertices (6 points P ). The set H is a tile. This is a rhombic
dodecahedron.

4.4 The tile T , the set H cut by two additional half-spaces

We are in dimension d = 3. For k 6= i define

wk
i = wi + λksk and mk

i = mi − λksk

Lemma 413 If λk = minab(va − vk) · (vb − vk) = (vi − vk) · (vj − vk) then

ml
j = wk

i mj
l = wk

i

mk
j = wl

i mk
l = wl

i

wl
j = mk

i wj
l = mk

i

wk
j = ml

i wk
l = ml

i .

Proof. Under the assumption by Lemma 410 the face Hij is a tetragon hence

wk
i = wi +λksk = P

{k}
ij = P

{l}c
ij = mj −λlsl = ml

j . The other equalities follow
similarly.

Lemma 414 Under Convention on OE (Remark 42) in dimension d = 3 we
have:

λ0 = λ023 = (v2 − v0) · (v3 − v0)

λ1 = λ123 = (v2 − v1) · (v3 − v1)

λ2 = λ201 = (v0 − v2) · (v1 − v2)

λ3 = λ301 = (v0 − v3) · (v1 − v3) .

Proof. Direct computations from OE. Remark that those are the coefficients
for the edges of two pairs of tetragonal faces H23 with H32 and H01 with H10.

Definition 415 (Separated indices) Under the convention OE we partition
the set of indices {0, 1, 2, 3} into {0, 1} ∪ {2, 3}. An upper index i and a lower
index j are said separated if they belong to two different parts of the partition.
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3

m3
1
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0
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0
=w2

1
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1
=w2

0
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0
=w2

1

w2
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0 w0
1 m3

2

w1
3
=m0

2

w1
2
=m0

3
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3
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2
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2
=m0

3

w3
1
=m2

0

w3
0
=m2

1 m2
3 w1

0m0
1 w3

2

Fig. 3. The combinatorial structure of the set T . The dotted lines are glued (iden-
tified) with corresponding continuous ones. The thick lines correspond to the edges
in the direction of one of the s vectors. The thin lines are the remaining edges of H.
The dashed boxes show the edges of T which are not the edges of H, they represent
the two additional tetragones (hence the edges inside the boxes are cut off). The
proportions are distorted: all horizontal edges of T have equal length and all vertical
edges of T have equal length.

Lemma 416 The points wj
i (and by symmetry mj

i ) belong to tetragonal faces
of H if they have separated indices and are additional vertices of T if their
indices are not separated.

Proof. By inspection.

Lemma 417 Under the conventions OE1 and OE2, in the following four
groups of all four points within the group are equivalent with respect to L.

w0
3 ∼ w0

1 ∼ w0
2 = m1

3 ∼ m1
0 ∼ m1

2(= w0
3)

w1
2 ∼ w1

0 ∼ w1
3 = m0

2 ∼ m0
1 ∼ m0

3(= w1
2)

w2
1 ∼ w2

3 ∼ w2
0 = m3

1 ∼ m3
2 ∼ m3

0(= w2
1)

w3
0 ∼ w2

3 ∼ w3
1 = m2

0 ∼ m2
3 ∼ m2

1(= w3
0) .

Remark that the middle points w and m do not have their equal counterparts.

Proof. As wi−wj = vj−vi all the w points are L-equivalent, similarlymi−mj =
vi − vj . Therefore all the three points wk

i = wi + λksk with the same upper
index are equivalent. Similarly all three ml

j points with the same upper index
are equivalent. Lemma 413 merges the groups.
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Lemma 418 (All vertical and all horizontal segments are equal) Under
the conventions OE1 and OE2 there are following two groups of six equal vec-
tors:

Vertical in Figure 4.4

m0
3 − w2

1 = w1
2 −m3

0 = w3
2 −m1

0 = w1
0 −m3

2 = w3
0 −m1

2

m0
3 − w2

1 = m2
3 − w0

1 = m0
1 − w2

3 = m2
1 − w0

3 = w3
0 −m1

2

Horizontal in Figure 4.4

m1
3 − w2

0 = w0
2 −m3

1 = w3
2 −m0

1 = w0
1 −m3

2 = w3
1 −m0

2

m1
3 − w2

0 = m2
3 − w1

0 = m1
0 − w2

3 = m2
0 − w1

3 = w3
1 −m0

2

Remark that compared to Figure 4.4 some vectors seem to have reversed order.
This is due to the fact that after gluing the solid together these vectors will go
”behind” T . The boxed equality = refers to the fact that the endpoints are
the same, for example in m0

3 −w2
1 = w1

2 −m3
0 we have m0

3 = w1
2 and w2

1 = m3
0,

that is the equality happens in the affine space as well as in vector space.

Proof. Each of these vectors is written as a difference of an m and a w point.
Each can be expressed in a symmetric way. The “vertical” non boxed equalities
follows from:

2O − v2 − v0 + λ1s1 + λ3s3 = w1
2 −m3

0 = w3
2 −m1

0 = w3
0 −m1

2 = w1
0 −m3

2

and similar expressions with lower indices 1, 3 and upper 0, 2. The link between
the two is given by the boxed equalities which result from Lemma 413. Similarly
one calculates the “horizontal” chain of equalities.

Corollary 419 Assume the convention OE. The points with no separated
indices: w3

2, m1
0, m0

1, w2
3 form a parallelogram and hence lie on the same two-

dimensional plane. They form a face of T . The same statement holds for the
points w1

0,m
3
2,m

2
3, w

0
1. For the first four points the plane is given by

{x : −(x− g)2 = (x− (g + r))2} r = v2 + v3 − v1 − v0 ,

for the second four points take r = v0 + v1 − v2 − v3.

Proof. The parallelogram statement was proven in the previous Lemma. Using
the properties of O, s1 and λ1 we get for w1

0:

(w1
0 − g)2 − (w1

0 − g − r)2 = (2O − 2v0 + 2λ1s1 − r) · r
= 2λ1s1 · r + (2O − 2v0) · (v0 − v2) + (2O − 2v0) · (v1 − v3) + r2

= −2λ1 + (v2 − v0) · (v0 − v2) + 2(v1 − v0) · (v1 − v3) + (v3 − v1) · (v1 − v3) + r2

= −2(v2 − v1) · (v3 − v1) + 2(v1 − v0) · (v1 − v3) + 2(v0 − v2) · (v1 − v3)

= 2(v2 − v1 + v1 − v0 + v0 − v2) · (v1 − v3) = 0 .

The computation for all other points is similar and will be skipped.
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Given g ∈ A, for any r ∈ L let M(r) be the (closed) half space of points
closer to g than to g + r.

M = M(r) = {x : (x− g)2 ≤ (x− (g + r))2} = {x : (2x− 2g − r) · r ≤ 0} .

Remark 44 The set ⋂
r∈L

M(r)

consists of points which are closer to g then to any of it lattice translates. It is
called a Voronöı cell of the point g with respect to the lattice L. It is a closed,
convex, bounded set. It is a closure of a (Voronöı) tile with which it shares the
interior.

Lemma 420 In any dimension d:

H =
⋂
ij

M(vi − vj)

Proof. This is geometrically well understood. Each Vi is the cone, an inter-
section of half spaces of points closer to vi than to any other vertex. After
translation by a vector g − vi an intersecting all such translates we recover H.
Computation follows:

H =
⋂
i

F(Vi) =
⋂
i

(Vi + g − vi)

=
⋂
i

⋂
j

(
{y : (y − vi)2 − (y − vj)2 ≤ 0}

)
+ g − vi


=
⋂
i

⋂
j

({y : (2y − vi − vj) · (vj − vi) ≤ 0}) + g − vi


=
⋂
i

⋂
j

{x = y + g − vi : (2(x− g + vi)− vi − vj) · (vj − vi) ≤ 0}


=
⋂
ij

{x : (2x− 2g − (vj − vi)) · (vj − vi) ≤ 0 =
⋂
ij

M(vj − vi) .

Lemma 421 In dimension d = 3 assuming convention OE the two additional
(as compared to H) faces of T lie on the boundaries of M(r) and M(−r) with
r = v3 + v2 − v1 − v0.

Proof. This was proven in Corollary 419.

Corollary 422 The points with no separated indices belong to M(r)∩M(−r),
with r from the previous Lemma.
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Proof. By geometry. The two groups of points are symmetric to each other
with respect to g, and so are M(r) and M(−r). But both half planes contain
g therefore M(−r) contains the symmetric image of ∂M(r) and hence the
first group of four points with separated indices and M(r) contains ∂M(−r)
and hence the second group. Interested reader is welcome to perform the
computation on inequalities.

Remark 45 Remark that the faces of H which are adjacent to the additional
face w1

0,m3
2,w0

1,m2
3 with external normal vector r = v3 + v2 − v1 − v0 are

H12,H13,H03,H02 with external normal vectors v2−v1, v3−v1, v3−v1, v2−v1.

From geometrical point of view we have just proven that the two additional
half spaces M(r) and M(−r) cut off the edge of H joining two pentagonal
faces along hexagonal ones. But to be sure that we do not rely too much on
the intuition we provide an algebraic proof.

Lemma 423 (w and m inside additional cuts) If r = vi + vj − vk − vl,
then, in an edge-wise acute simplex, for every t ∈ i, j, k, l we have wt,mt ∈M.

Proof. First note that by symmetry for every t: wt − g = O − vt = g − mt

and the lengths of these two vectors are equal (and equal for all t). Moreover
(mt− (g−r))2 = (r− (g−mt))

2 = (−(wt−g)+r)2 = (wt− (g+r))2. Thus the
statement about mt and r follows from the statement about wt and −r. We
represent the inequality defining M as 0 ≤ (x−g+r)2−(x−g)2 = (2(x−g)+r)·r.
As wt = O + g − vt, we have:

(2(wt − g) + r) · r
= (2O − vi − vk + vi + vk − 2vt + r) · (vi − vk)

+(2O − vj − vl + vj + vl − 2vt + r) · (vj − vl)
= (vi + vk − 2vt + r) · (vi − vk) + (vj + vl − 2vt + r) · (vj − vl)
= 2(vi − vt) · (vi − vk) + (vj − vl) · (vi − vk) + 2(vj − vt) · (vj − vl)

+(vi − vk) · (vj − vl)
= 2 ((vi − vt) · (vi − vk) + (vj − vl) · (vi − vk) + (vj − vt) · (vj − vl))

= 2


t = i (vj − vl) · (vj − vk)
t = j (vi − vl) · (vi − vk)
t = k (vi − vl) · (vi − vk) + (vj − vk) · (vi − vk) + (vj − vk) · (vj − vl)
t = l (vi − vl) · (vi − vk) + (vj − vl) · (vi − vl) + (vj − vl) · (vj − vk)

 ≥ 0 ,

by edgewise acuteness.

Lemma 424 Under OE set r = v0 + v1 − v2 − v3. The points wj
i (and by

symmetry mj
i ) with separated indices belong to M(r) and to M(−r).
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Proof. Let us calculate for w3
0 and r, other calculations are similar (or simpler).

(w3
0 − g)2 − (w3

0 − (g + r))2 = (2O − 2v0 + 2λ3s3 − r) · r
= 2λ3s3 · r + (2O − 2v0) · r − r2 = 2λ3 + (2O − v0 − v2) · (v0 − v2)− (v0 − v2)2

+(2O − v1 − v3) · (v1 − v3) + (v1 + v3 − 2v0) · (v1 − v3)− ((v0 − v2) + (v1 − v3))2

= 2(v1 − v3) · (v0 − v3)− 2(v0 − v2)2 + (v1 − v3) · (v1 + v3 − 2v0 − (v1 − v3)− 2(v0 − v2))

= 2(v1 − v3)(v2 − v0)− 2(v0 − v2)2 = 2((v1 − v0 + v0 − v3)(v2 − v0)− (v0 − v2)2)

= 2((v0 − v2) · (−v1 + v0 − v0 + v2) + (v0 − v2) · (−v0 + v3))

= 2((v0 − v2) · (v2 − v1) + (v0 − v2) · (v3 − v0)) ≤ 0 by edgewise acuteness.

Remark 46 In the last lines of the previous proof we used the following trick:
In an edgewise acute simplex

If p = va − vb, q = vc − vd then p · q − p2 ≤ 0

which follows from writing q = vc − vb + vb − vd:

(vc − vb) · (va − vb) + (vb − vd)(va − vb)− (va − vb) · (va − vb)
= (vc − va) · (va − vb) + (vb − vd)(va − vb) ≤ 0

Proposition 425 In dimension d = 3:

T =
⋂
ijkl

M(vi + vj − vk − vl)

In fact under OE, with r = v0 + v1 − v2 − v3:

T = H ∩M(r) ∩M(−r)

Proof. We have proven that all the vertices belong to the convex intersection
∩M(r) for appropriate subset of vectors r. Also we have proven that the faces
of T belong to the boundaries ∂M(r) for appropriate r. In particular r = vi−vj
for the faces of T which are parts of the faces or H and the two additional faces
are on the boundaries of M(r) for ±r = v0 + v1 − v2 − v3.

Theorem 426 For a face wise acute simplex in dimension d = 3 the set T is
a closure with shared interior of a tile for the simplex lattice L.

Proof. It is enough to prove that the translations by lattice vectors of T fill the
space around each vertex, with fitting edges and faces. We work under OE.
There are six groups of four equivalent vertices:

1. Two groups of: four wi and four mi points.
2. Four groups of: two vertices with separated indices wk

i = ml
j and wk

j = ml
i

together with two veritces with no separated indices wk
l and ml

k, were the
choice is determined by the the direction of an edge (upper index k) of a
point w, and the points m are determined by completion.
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In general to a fixed (original) vertex of each group we translate three other
equivalent vertices. Each of the translated points brings an adjacent face sym-
metric (with opposite external normals) to one of the three faces of the original
vertex. Those paired faces share two equal (vector) edges. The remaining faces
of translated points fit pairwise with each other around a “sticking out” edge
which is common to all translated vertices but absent at the original one. In
case of the points w and m all the edges are si edges of the same length λi with
the “sticking out” edge being the s vector with the same index as the original
point. In case of the doubly indexed points they share two s directions and a
“horizontal” and a “vertical” one.

• Consider w0 which is lattice equivalent to any wi and translate each such
vertex wi to w0 by vi − v0. Then each face T0i adjacent to w0 will be
matched with the translated face Ti0. Remark the change of order in the
indices, which shows that the faces are matched with opposite external
vectors. Each edge starting at w0 in the direction sj , j 6= 0 will be common
with two such translated edges from the faces Ti0, i 6= j, and they all
share the length λj . There will be an additional edge, common to all three
translated faces in the direction of s0, which “sticks out” from T . We
recover the partition of A near O translated by g − v0. Similar argument
works for all other points w and by symmetry m.

• Consider now the point w3
0 = m0

1 with separated indices. It is adjacent
to the faces T01, T31, T02, with three edges λ2s2, −λ3s3 and the additional
“vertical” edge (v0 − v3) + λ0s0 − λ3s3. The points equivalent to w3

0 =
w0+λ3s3 are all points w3

i and m0
j . There are three such points in addition

to w3
0 itself. Each of such point is adjacent to a face symmetric to one of

the faces adjacent to w3
0 with the pair of adjacent edges equal (due to

common upper index in case of s edges and an equal “vertical” edge).
There is an additional edges “sticking out” common to all the other points
which is “horizontal”. Remark how the symmetric additional two faces
stick together with a non s edge of H filling a wedge between them.

5 Background

Knuth [16] gives a formal definition of an algorithm as a computational method
which involves the iteration of a function (a dynamical system) which takes an
input and after a finite number of steps produces a fixed point which determines
an output. This notion can be expanded to include algorithms which we call
streaming algorithms which transform sequences of inputs into sequences of
outputs by means a family of parameterized maps acting on a space internal
states, the inputs supplying the parameter, the outputs being evaluations of
some function of internal states. Such dynamical systems need not settle down
to a fix point or even a periodic orbit. The action on internal states with
nonconstant inputs is a time dependent dynamical system and with constant
inputs a time independent one. All this suggests that one might find interesting
dynamical systems and associated concepts to analyze algorithms which occur
in grey scale and color printing, resource management, game theory, signal
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processing (e.g. sigma-delta modulators), scheduling, et al. Dynamical systems
that have often turned up are ones employing piecewise isometries of Euclidean
space, actually piecewise translations and rotations.

The problem studied in the present work is one derived from an algorithm
used in digital printing. This algorithm goes under the generic name of error
diffusion and is described in [10], [14]Here the usefulness of applying dynamical
system concepts is apparent. EDA is an approximation algorithm, the outputs
being discrete versions of continuous inputs and the differences forming errors
which can accumulate in time. The internal state space is one dimensional for
grey scale printing with the inputs coming from an interval. It is three dimen-
sional for color printing with the inputs coming from a polytope with five or
more vertices [1], [3].The family of maps are piecewise translations of Euclidean
space. The bounding of orbits is important because it leads to the result that
the time averages of inputs and outputs become arbitrary close. This is enough
to allow the use of a few printable output colors to be a good approximations to
the continuous color input palette. The proof of boundedness of orbits, which
is easy in one dimension but difficult in three and higher, was achieved in [2].

After boundedness is guaranteed, the quality of the algorithm can be inves-
tigated. For instance, EDA is known to be the best algorithm in the class of
online, greedy, algorithms on the standard simplex [8]. Of course, its outputs
are not optimal (as can be obtained by non-algorithmic methods (that require
unbounded look ahead): see [21] and references therein).

In the study of dynamical systems an important consideration is the descrip-
tion of invariant sets. With respect to invariant sets for piecewise translations
we cite [12], [13], [18] for constant input and [19] for nonconstant input. Further
works on the constant input case are [5] and in preparation [7].

EDA on an interval is reduced to rotation on a circle which is connected to
Diophantine approximations. This was one of the motivating factors to [5] and
the present work. In [5] there is a stronger two dimensional result than in the
present work in that the assumption of ergodicity is not required. However [7]
will contain a stronger two dimensional result than [5]: namely the invariant
set is a polygonal tile as are its intersection with any union of Voronöı domains,
and the dynamic translates each such subtile providing a different partition of
the invariant set with isometric pieces. This in turn connects EDA with the
interval exchange maps.

In scheduling algorthims such as in the so-called Carpool problem the poly-
tope may vary among a finite collection. It leads one to study the dynamics in
the error space, the vector space that model the affine space for the family of
polytopes under consideration. This change of viewpoint is necessitated by the
fact that there is no invariant region in the affine space where the polytopes
are defined but there is one in the vector space (see [8], [22], [23]).

One finds algorithms whose dynamics use piecewise translations in other
settings like game theory [20]. In sigma-delta modulators boundedness results

in [9] correspond to boundedness results for EDA in [2]. Similarly tiling results
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for sigma-delta modulators with ergodic inputs proven in [13] correspond to
the tiling properties of EDA proven in the present work. In other works in
digital filters [17] piecewise rotations were studied. Piecewise rotations were
investigated in their own right in [4], [11], [12].
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