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Abstract: In recent years DNA has attracted much attention for its potential application 

in molecular electronics and nanotechnology. Numerous mechanisms have been carried 
out for studying the charge transport in DNA. Among which a polaron hopping 

mechanism has turned out to be a prospective candidate for modeling the coupling 

between electronic and lattice configuration. In this regard, Su-Schrieffer-Heeger (SSH) 

model describes the coupled structural and electronics aspects of DNA. In this work 
Mean Lyapunov exponent (MLE) theory is proposed to study the charge transfer 

mechanism in DNA through SSH model. The spatial pattern of the system is disordered 

when MLE is large and ordered when it is small. Also, Landauer resistance is related to 

Lyapunov exponent via the transmission coefficient of the system. The obtained results 
based on the MLE theory express the effect of the temperature and external field on 

charge transfer and the resistance of DNA. Also it yields the best range for the field 

parameters. 

  
 

Keywords: Charge transfer in DNA, Landaure resistance, Chaos theory, Mean 

Lyapunov exponent.  

 

1. Introduction 
Investigations of DNA conducting properties are very important for both 

classical radiobiology and quite a new science of nanobioelectronics [1]. There 

is clear evidence that charge injection and migration in DNA is associated with 

damage, mutation and repair of DNA [2]. In nanotechnology, DNA junctions 

have the potential of application in DNA-based drug delivery [3]. By studying 

the aspects of DNA single molecule conductance, it is inferred that DNA is 

suitable for the design of functional nanostructures in nanoelectronical devices, 

nanosensors, nanocercuits as well as in electrical DNA sequencing [4]. For 

different conditions the experimental data observed by different groups are often 

contradictory. Then, the argument whether DNA is a conductor [5], a 

mailto:s.behnia@sci.uut.ac.ir
mailto:s.fathizadeh@sci.uut.ac.ir


Behnia and Fathizadeh 74 

semiconductor [6] or an insulator [7] and even superconductor [8] is still 

ambiguous. Therefore applying the physical rules in determining the charge 

transfer phenomena in DNA is challenging issue. May be considering the chaos 

theory tools could open the new horizon in understanding the problem of charge 

transfer in DNA. Numerous theoretical mechanisms have been carried out for 

studying the charge transport in DNA. Among which a polaron hopping 

mechanism has turned out to be a prospective candidate for modeling the 

coupling between electronic and lattice configuration. The tight-binding 

Peyrard–Bishop–Holstein (PBH) [9,10] and Su–Schrieffer–Heeger (SSH) 

[11,12] are two effective models, which are all based on a polaron.  In the two 

models, overlapping   orbitals  of the DNA base pairs are thought to provide a 

channel for migration of charge in it. In the current study, we have used SSH 

model to describe the coupled structural and electronics aspects of DNA. Also, 

it is important to understand how the electron transport in DNA is affected by 

the environmental phonons. In this model, a tight-binding nanoscale linear chain 

is used, which is weakly coupled to the vibrational phonon modes from the 

environment (reservoir) via electron– phonon (e–ph) interaction. The model, 

characterizes the atomic displacements as classic oscillators and charge transfer 

phenomena with nearest neighbor tight-binding model. 

 Most of the introduced Hamiltonians in DNA charge transfer and the 

corresponding equations of motion are extremely nonlinear and have a high 

sensitive behavior to chosen coefficients. Also, analysis of bioinformatics data, 

such as the sequences derived from the structure of DNA molecules, reveals that 

these data are “chaotic” in the sense that along a molecule the spatial variation is 

analogous to the temporal variation in chaotic systems. The Lyapunov exponent 

is one of the most popular concepts of the nonlinear dynamics to measure how 

stable the systems are. In 1999 Hiroshi Shibata introduced mean Lyapunov 

exponent (MLE) in order to characterize the chaos in systems described by 

partial differential equations [13, 14]. The MLE theory has attracted researcher’s 

attention and has been successfully applied in several fields [15, 16]. In this 

work, MLE theory is proposed to study the charge transfer mechanism in DNA 
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through the SSH model. Also, Landaure resistance is related to Lyapunov 

exponent via the transmission coefficient of the system. By considering the 

behavior of MLE, we have studied the variation of resistance of DNA in the 

framework of SSH model with external phonon coupling. In the other hand, 

applying the electrical field, the effect of the amplitude and frequency of the 

field on charge transfer and resistance of DNA is studied so the best range for 

field parameters is selected. 

  

2. The Model and Simulations 
The studied system is consisting of the DNA lattice and an environmental 

optical phonon source. The Hamiltonian of the system can be modeled as 

                               PhePhSSH HHHH                                  (1) 

The first term, so-called SSH model [11, 12], has been used to simulate charge 

transfer in DNA with strongly internal e–ph interaction represented in classical 

scheme 
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where m is the mass of base pairs, 0t  is the hopping integral, the energy 0 is 

the orbital energy level of the molecule,  nx  is the atomic displacement for the 

nth molecule, nc  and 


nc  are creation and annihilation operators of an electron 

at the site n  and  is the internal e–ph coupling constant. The last term in Eq. 

(2) represents the spring potential with an effective spring constant sk .  

Two last terms in Hamiltonian represent the vibrational mode at frequency 0  

coming from the external sources and the local external e–ph interaction term, 

respectively. 
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where nb  and 


nb  are creation and annihilation operators of an phonon at the 

site n  and 0  is the external e–ph coupling constant. 

In the current study, we propose the effect of electrical field on charge transfer 

in DNA. In this regard, an AC field is applying so it provides an extra degree of 

freedom (frequency of field) in studying the effect of field. The corresponding 

Hamiltonian has the following form 

                           nn

n

field cacnteEH  )cos(0                            (4) 

where 0E  and   are the amplitude and the frequency of the field, respectively 

and Aa 4.3  is the distance between the base pairs in lattice. 

The corresponding equations of motion have the following forms: 
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where )(tn  accounts for thermal noise, 0)( tn , 

)(2)()( ttTkmtt nkBkn
   , with T  as the bath temperature. 

 

Stability analysis 

The Lyapunov exponent is defined as the average rate of divergence of two 

initially nearby trajectories.  It has been calculated for a single starting point. If 

we compute the Lyapunov exponent for a sample of starting points and then 

average those results, we define the mean Lyapunov exponent (MLE) for the 

system [17]. Then MLE will be a true indicator of the chaotic or nonchaotic 

behavior of the system. It expresses the disorderness of the spatiotemporal 

patterns of nonlinear systems. In order to investigate the characteristics of 
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Lyapunov exponents, we have used the Jacobi matrix. Jacobi matrix, gives the 

linear stability of the system and the disorderness of the field variables of the 

system. The eigenvalues of matrix give the Lyapunov exponents [13, 14].‏ To 

analyze the equations, it is convenient to transform the second order differential 

equations into an autonomous system of first order differential equation and use 

the finite difference method. Then we have  
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Then we consider the 4N × 4N Jacobian matrix written as: 
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The MLE is defined as

 

                                      Nkk B
N

,ln
1

                                         (8)                                                                                     

where NkB ,  means the determinant of matrix NkB ,  [13,14]. A positive MLE 

indicates the instability of the system but its negative amount indicates the stabe 

system.  

On the other hand, the transmission coefficient of the system )(T  is given as  

                                             )2exp( NT k                                               (9) 

where N is the number of base pairs in DNA lattice. 

Transmission coefficient is related to the Landauer resistance via  

                                                  
T

T


1
                                                     (10) 
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in units of the quantum resistance )13(2 2  keh [18].  

 

Results and discussions 

By analyzing the MLE theory, one could obtain the range of the parameters to 

have the best ordered field variables[14]. The growth of MLE corresponding to 

increasing the disorderness of the system then the best range for the parameters 

of the system is where the MLE takes its smaller values, which means that 

spatial pattern of system is ordered. 

Figs. 1(a) and 1(b) show the variation of MLE and Landauer resistance with 

respect to the temperature in absent the external field, respectively. We  have 

considered the case of homopolymer DNA and a length of N=100 base pairs in 

our numerical calculations.  By considering the figures, we could see the 

inherently charge transfer in DNA and stability regions of the system even in 

absent the external current. The minimal value of the MLE and DNA resistance 

is about where the DNA is denatured )350340( KT  . 

 

Fig. 1(a). Mean Lyapunov exponent versus the temperature in absent the external field. 

01.0,01.0,2.0,85.0,4.0 000  kt . 
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Fig. 1(b). Landauer resistance versus the temperature in absent the external field. 

01.0,01.0,2.0,85.0,4.0 000  kt . 

 

Following figures appear the effect of external field with different parameters on 

charge transfer and resistance of DNA. We could see applying the external field 

decrease the resistance of DNA but the minimal value of resistance is again 

about where DNA is denatured. 

 
Fig. 2(a). Mean Lyapunov exponent versus the temperature in present the external field. 

1,10,01.0,01.0,2.0,85.0,4.0 0000   Ekt . 
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Fig. 2(b). Landauer resistance versus the temperature in absent the external field. 

1,10,01.0,01.0,2.0,85.0,4.0 0000   Ekt . 

 

On the other hand, by analyzing the MLE theory the best range for the 

parameters of the electrical field is selected, as charge current is encountered 

with minimal resistance.  

Figs. 3 and 4 show the variations of MLE and resistance with respect to the field 

parameters. 

 
Fig. 3(a). Mean Lyapunov exponent versus the amplitude of the external field. 

Ketemperaturkt 300,1,01.0,01.0,2.0,85.0,4.0 000   . 
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Fig. 3(b). Landauer resistance versus the amplitude of the external field. 

Ketemperaturkt 300,1,01.0,01.0,2.0,85.0,4.0 000   . 

 
Fig. 4(a). Mean Lyapunov exponent versus the frequency of the external field. 

KetemperaturAmVEkt 300,3.2,01.0,01.0,2.0,85.0,4.0 0000   . 
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Fig. 4(b). Landauer resistance versus the frequency of the external field. 

KetemperaturAmVEkt 300,3.2,01.0,01.0,2.0,85.0,4.0 0000   . 

 

3. Conclusions 

By considering the MLE, the relation between the system parameters and spatial 

pattern of the system is evaluated. According to the obtained results, the spatial 

pattern of the system is varied with respect to the parameters. In the current 

study, the effect of external field on charge transfer and resistance of DNA is 

studied. The variation of MLE and thus Landauer resistance with respect to the 

different parameters such as temperature, amplitude and the frequency of 

external field are appeared. It becomes apparent that MLE and Landauer 

resistance are minimal about where the DNA is denatured. On the other hand, 

our results show the sensitivity of MLE to the field parameters. Then, by 

considering the MLE, the best range of the system parameters is selected. 
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