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Abstract: The energy of generalized logistic maps at full chaos is computed and 
examined in serving as a guide to multi-disciplinary applications. The maps considered 
are of the form xn+1 =f(xn)= r xn

λ(1-xn)
µ, limited above by 1 resulting in the maximum r 

that yields full chaos; the exponents λ and µ are taken to be any positive real numbers 
between 0.5 and 2. For given values of r, λ and µ, the average energy is calculated as the 
average squared x over 512 points starting at the 2049th iteration point. Near full chaos, 
its dependence on r for fixed values of λ and µ is highly non-linear consisting of a 
number of maxima and minima. For λ greater than 1.1, the energy diminishes 
independent of the initial iteration point. At full chaos, the energy dependence on values 
of λ in the range [0.5, 1.1] and values of µ in the range [0.5, 2] is depicted graphically. 
For a fixed λ or µ, this dependence is approximated linearly.        
Keywords: energy, full chaos, logistic map, generalized logistic maps.    

 

1  Introduction 
 

In the present paper, the energy of chaotic generalized logistic maps is 
computed and examined. The results of the present study may find applications 
in diverse scientific disciplines such as fracture mechanics, see for example, D. 
Sotiropoulos [1], social sciences (e.g. Skiadas & Skiadas [2]), population 
growth modeling (e.g. Marotto [3]), and music composition (e.g. D. 
Sotiropoulos et al [4]). For applications in astronomy and other areas the reader 
is referred to the monograph of Skiadas & Skiadas [5].     

The generalized logistic maps considered here are of the form,   
                                       

              
µλ )1(1 nnn xrxx −=+                                       (1) 

 
in which the parameters r, λ and µ are positive real numbers, while the variable 
x and its map range from 0 to 1. The classical logistic map is given by λ=1 and 
µ=1, whose chaotic nature of the produced x’s were discussed by May [6]. A 
discussion on the x’s produced by iteration for λ=1 and µ<1 as well as other 
specific values may be found in Skiadas & Skiadas [5]. Marotto [3] found that 
for the case λ=2 and µ=1, there is a range of values of r near its maximum ( 
which is obtained from the condition that the upper limit of x is 1) for which the 
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x’s produced are soon after attracted to zero, independent of the initial x chosen 
in the iteration process. Gottlieb [7] further discussed this by computing a region 
in the (initial x, r) space in which the produced x’s escape the zero value fixed 
point. The chaotic behavior of the case λ=µ=1/2 as applied to music 
composition was visited by V. Sotiropoulos [8], while that of the double logistic 
map was examined for music composition by by A. Sotiropoulos [9]. On maps 
of related functional dependence, Stutzer [10] investigated the iterative map xn+1 

= r xn
 (1-xn

1/2) as a macro-economic dynamic model, while Gottlieb [11] 
analyzed the map xn+1 = r xn

3/2 (1-xn
1/2).  Skiadas & Skiadas [5] looked at the 

chaotic behavior of the generalized rational iteration model xn+1 = xn + r xn
 (1-

xn)/[1-(1-σ)xn] with positive σ.  Last, D. Sotiropoulos [12] examined in detail 
the nature and regions of existence of fixed points for the map given by Eq,. (1) 
above.  

The upper limiting value of the map parameter r in Eq. (1) is given in 
D. Sotiropoulos [12]  in terms of the map exponents λ and µ as 

 

       
λµ λµµλ )/1()/1(max ++=r                      (2) 

 

It is at this value of r which yields full chaos that the energy produced by the 
map of Eq. (1) will be calculated and studied in the present paper for values of λ 
in the range [0.5, 1.1] and values of µ in the range [0.5, 2], since it is found in 
the present study that for λ greater than 1.1 the energy diminishes independent 
of the initial iteration point. Furthermore, for a fixed λ (or µ) the dependence of 
the map’s energy at full chaos on µ (or λ) will be established analytically by 
approximating the energy computed from x’s resulting from the iterations of Eq. 
(1).                 
  

2  The energy of generalized logistic maps   
 

The energy, E, of the generalized logistic maps given by Eq. (1) is defined as 
the sum of the squared iterated x’s  

                                                ∑
=

=Ε
�

n

nx
1

2
                             (3)                                                                                                                    

The energy clearly depends not only on the map’s parameters r, λ and µ but also 
on the number, N, of x’s taken into account in the summation and on the initial 
x (=x1) selected. To eliminate the energy’s dependence on the latter two factors, 
we divide the energy by a large number N and pick as initial x, the x produced 
by the map after a large number of iterations so that the resulting energy will be 
independent of both N and the initial x. Thus, we define the average energy 
which may be interpreted as the map’s generated power as 
 

                               ΝΕ=Ε /                                            (4) 
 

The average energy being, therefore, the map’s average squared iterated x.  
From the numerical calculations performed in the present study, we 

have concluded that the appropriate initial x to choose in order to satisfy the 
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aforementioned requirement is the x produced by the map after 2049 iterations. 
Moreover, in computing an invariant value for the average energy a large 
number of x’s needs to be taken into account and we have concluded that 512 
iterations are enough to satisfy this requirement. 

As an example of the chaos generated by the map of Eq. (1), the 512 
chaotic x’s generated at full chaos (r=rmax) after 2049 iterations with λ=1 and 
µ=0.5, 1, 2 are shown in Fig. 1a, b, c.       

 

 
                  

 

 
   Fig. 1. The fully chaotic productions, xn, of the generalized logistic maps with 
λ=1and µ=0.5 (α), 1 (b), 2 (c)    
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In Fig.1, the case λ=µ=1 (r=4) corresponds to the classical logistic map [6]. We 
see that the generated fully chaotic x’s are different for the three cases (a) (b) 
and (c) and, as we shall see in the following section, also the average energy 
produced is different.     
 Next, the average energy, Ē, of the generalized logistic maps of Eq. (1) 
is computed using Eqs. (3), (4) for a large range of the map’s multiplying 
parameter r and for different values of λ and µ. The upper limiting value of λ is 
taken as 1.1 since we have found computationally that larger values yield 
diminishing energy near full chaos (maximum r) as the generated x’s go to the 
fixed point zero after only very few iterations. The phenomenon of diminishing 
generated x’s near full chaos for the map of Eq. (1) with λ=2 and µ=1 was 
observed and explained by Marotto [3] and further discussed by Gottlieb [7] in 
terms of the nature of fixed points for this value of λ. In view of the findings by 
the second author of the present paper in [12] in respect of the nature and 
existence of fixed points for all values of λ and µ in the map of Eq. (1), we see 
that Marotto’s explanation holds true for diminishing x’s near full chaos for λ’s 
greater than 1.1.  

The computed average energy, Ē, versus the generalized logistic map 
parameter r is shown in Fig. 2 for different values of equal map exponents, λ=µ. 
Interest in the present study is in the chaotic regime or near it so that very small 
r’s are not considered in the computations. We observe that the maximum r 
considered increases with increasing λ=µ in accordance with Eq. (2). Further, 
we observe that the average energy decreases both at its maximum and at full 
chaos (maximum r) with increasing λ=µ. Last, the highly non-linear dependence 
of energy on r near full chaos is evident with the existence of a number of 
extrema.                              

 
       Fig. 2. The average energy, Ē, versus the generalized logistic map 
parameter r for equal exponents, λ=µ.   
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3  The energy at full chaos    
 

Of particular interest in the present paper is the energy generated by the 
generalized logistic maps of Eq (1) at full chaos, that is, when r=rmax as given by 
Eq. (2). To this end, the average energy, Ē, is computed at full chaos for 
different values of the map exponents λ and µ. In Fig. 3, the average energy, Ē, 
is shown versus the map exponents λ=µ. In solid line is the computed value.      

 

 
                                        

Fig. 3. The average energy, Ē, at full chaos versus the map exponents, λ=µ. 
 
We observe as already noted above, that the energy at full chaos decreases with 
increasing λ=µ. This decrease is substantial as exemplified by the relative 
energy decrease of 36% generated by the fully chaotic elliptic map (λ=µ=0.5) 
and the near-logistic map (λ=µ=1.1). Furthermore, we see that the decrease is 
weakly non-linear so that a linear approximation to the computed energy data 
points as performed by Excel results in the dashed line shown in the figure. The 
equation of the approximate linear dependence of the average energy on the 
map exponent λ (=µ)  is also shown in the figure. The squared regression 
coefficient between the two is 0.99. 

Next, the average energy, Ē, at full chaos was computed versus one of 
the map exponents for fixed values of the other exponent. The results are shown 
in Figs. 4, 5. In Fig. 4 the energy dependence on the map exponent λ for fixed 
values of µ is shown. 
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Fig. 4. The average energy Ē at full chaos versus the map exponent λ for fixed µ 
 
 It is observed that the average energy exhibits weak fluctuations with 
increasing λ and has a noticeable decrease with increasing λ only for the larger 
values of µ. To compare with this, Fig. 5 is shown where now λ is fixed and the 
energy dependence on the map exponent µ is depicted. 
 

 
Fig. 5. The average energy Ē at full chaos versus the map exponent µ for fixed λ 
 
It is seen that the energy’s dependence on µ is stronger than on λ as far as its 
decrease is concerned. 
 Last, as demonstrated above for λ=µ, it will be shown in Figs. 6, 7 that 
the energy’s dependence on λ or µ may also be linearly approximated for 
unequal λ and µ if one of the two exponents is kept constant.   
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Fig. 6. The linear approximation of the average energy, Ē, at full chaos on µ. 

 
In both Figs. 6, 7 the solid line connects the computed energy points at full 
chaos while the dashed line is the modeled linear approximation.   

    

 
Fig. 7. The linear approximation of the average energy, Ē, at full chaos on λ. 

 

The linear approximation of the energy with increasing map exponent λ or µ is 
satisfactory since the squared regression coefficients are 0.88 and 0.94 for Figs. 6 
and 7, respectively. 
 

4 Conclusions    
 

The energy of generalized logistic maps was studied. In order to be able to 
compare the energy generated by different maps and also have an invariant energy 
value for each map, the average energy was defined for a large number (512) of 
iterations as the total energy per number of iterations with an initial map value that 
given by the map after a couple of thousand (2049) of iterations. It was found that 
the average energy exhibits strong fluctuations with a number of extrema near the 
chaotic regime whose full development is given by the maximum map parameter r. 
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Further, the energy at fully developed chaos decreases with increasing map 
exponents λ and µ and this decrease was satisfactorily approximated in a linear 
fashion.           
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