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Abstract: In this paper we combine forwarding and backstepping techniques to stabilize 

mixed interlaced systems. All the signals in the close loop remain semiglobally 

ultimately bounded the output signal y follows a desired trajectory signal yd, with 

bounded derivatives up to mth order. We also present simulation examples that prove the 

adaptation of mixed interlaced forms, using a backstepping controller. 

1 Introduction 
Recent technological developments have forced control engineers to deal with 

extremely complex systems that include uncertain and possibly unknown 

nonlinearities, operating in highly uncertain environments. Man has two 

principal objectives in the scientific study of his environment: he wants to 

understand and to control. The two goals reinforce each other, since deeper 

understanding permits firmer control, and, on the other hand, systematic 

application of scientific theories inevitably generates new problems which 

require further investigation, and so on. Nonlinear control includes two basic 

forms of systems, the feedforward systems and the feedback systems.  

The strict feedback systems can be controlled using the well known 

backstepping technique. The purpose of backstepping is the recursive design of 

a controller for the system by selecting appropriate virtual controllers. Separate 

virtual controllers are used in order to stabilize every equation of the system. In 

every step we select appropriate update laws. The strict feedforward systems can 

be controlled using the forwarding technique that is something like 

backstepping but in reverse order. Other cases of systems that can be converted 

to the previous forms are part of a larger class of systems that are called 

interlaced systems as described by [9], and [3]. In these systems we combine 

backstepping and forwarding techniques together in order to recursively design 

feedback control laws. Interlaced systems are not in feedback form, nor in 

feedforward form.  These systems have a specific methodology that differs from 

backstepping and forwarding. We don’t start from the top equation, neither from 

the bottom.  

Other special cases of systems are part of other forms that we call mixed 

interlaced and we introduce their study in the present paper. The methodology is 

based on classical interlaced systems and is developed by the authors. We want 
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to make the systems solvable by one of the well known backstepping and 

forwarding methods. This can be reached after some specific steps that convert 

the system into a known form. We start from the middle equation and we 

continue with the top. The previous method is based on classical interlaced 

forms that are introduced by [9] and [3] and can be extended to more 

complicated systems. 

A lot of researchers developed a series of results that generalized and 

explained the basic idea of nonlinear control. Teel [10] in his dissertation 

introduced the idea of nested saturations with careful selection of their 

parameters to achieve robustness for nonlinear controllers. After Teel , 

Sepulchre, Jankovic and Kokotovic [9] proposed a new solution to the problem 

of forwarding that is based on a different Lyapunov solution.  
The paper consists of four sections including the current one. The next 

section introduces the meanings of Adaptive Control, Backstepping and 
Forwarding techniques. In Section 3, the main body of this paper, the mixed 
interlaced forms are analyzed. Finally section 4 draws some concluding remarks. 

2 Background in Adaptive Control 

The history of adaptive control began from the early 1950’s. With the 

passing of the years a lot of papers and books have been published. These 

research activities have proposed solutions for basic problems and for broader 

classes of systems. Especially the interest for nonlinear adaptive control began 

from the mid-1980’s. A lot of great scientists, such as Kokotovic et al [2], Lewis 

et al [4], Ioannou and Sun [7], Christodoulou and Rovithakis [5] have studied 

adaptive control and its applications extensively. 

Adaptive control is a powerful tool that deals with modeling uncertainties in 

nonlinear (and linear) systems by on line tuning of parameters. Very important 

research activities include on-line identification and pattern recognition inside 

the feedback control loop.  

Through time, adaptive control has existed big development (Sepulchre et 

al [9]) in order to control plants with unknown dynamics that appear linearly. 

Adaptive control is based on Lyapunov design. 

In order to make it clear, a short example will be reported. Let us consider 

the nonlinear plant: 

 
2x u xθ= +&       (1) 

And select the control law as: 

  
2ˆu qx xθ= − −     (2) 

 

which, if the estimated θ ( θ̂ ) is equal to real θ such that θ̂ θ≡ , then the result is 

a close loop system of the form: 

 

 x qx= −&      (3) 
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The filtered version of the signals x is: 

        21

1
fx x

s
=

+
    (4) 

The prediction error e is: 

 

ˆ ˆˆ ( ) f fe x x x xθ θ θ= − = − =    (5) 

 

We use the commonly normalized update law: 

 

2

2
ˆ

1
f

f

x
x

γ
θ θ= −

+

& %     (6) 

The previous update law is linear. It can be proved that θ%  does not converge to 

zero faster than exponentially and the easiest case is: 

 

(0)te γθ θ−=% %      (7) 

 

 Finally the close loop system has the following form: 

 
2x x xθ= − + %&                                                                   (8) 

 

where for simplicity q substituted with 1 and by substituting θ%  from the 

previous equation is obtained: 

 
2(0)tx x e xθ−= − + %&     (9) 

 

where for simplicity γ substituted with 1. 

It is easy to see that the explicit solution of the previous is determined by the 

following equation: 

 

2 (0)

(0) (0) [2 (0) (0)]t t

x
x

x e x eθ θ− −
=

+ −% %
                            (10) 

 

From the previous it is clear that if (0) (0)x θ% <2 then it is obvious that x 

converge to zero as t�∞. At the case that (0) (0)x θ% >2, at the time: 

 

1 (0) (0)
ln

2 (0) (0) 2
esc

x
t

x

θ

θ
=

−

%

%
 

 

the difference of the two terms of the exponential in the denominator becomes 

zero, that is: 
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| ( ) |x t →∞  as esct t→  

 

The previous model is unstable (x goes to infinity at tesc) and Lyapunov design 

models must be specified in order to achieve stabilization. 

Let choose the following Lyapunov function: 

 

2 21 1 ˆ( )
2 2

V x θ θ= + −     (11) 

 

The derivative of the Lyapunov function for our nonlinear plant is: 

 

2 2ˆ ˆ( ) ( )V x u xθ θ θ θ= + + −
&

&  

 

In order to find a control and an update law we must specify: 

 

2 2 2 2ˆ ˆ( ) ( )V x x u x xθ θ θ θ≤ − ⇒ + + − ≤ −
&

&   (12) 

 

From the previous equation in order to remove the unknown θ we use the update 

law: 

 

3ˆ xθ =
&

 

 

And the control law is: 
2ˆu x xθ= − −  

 

Both control law and update law yield 2V x≤ −&  such that stability maintains in 

opposition to the previous approach without Lyapunov. 

 

Adaptive control in most cases has tracking error that converges to zero. 

 

i) Adaptive Backstepping Design 

 

Backstepping ([1], [2], [4], [7]) is a recursive design for systems of the 

form: 

 

1 2 1 1 2

2 3 2 1 2 3

3 3 1 2 3

( , )

( , , )

( , , )

x x x x

x x x x x

x u x x x

ϕ θ

ϕ θ

ϕ θ

Τ

Τ

Τ

= +

= +

= +

&

&

&
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with state x=[x1
T
, x2

T
, x3

T
] and control input u. The value θ is a p x 1 vector 

which is constant and unknown. The function φ1 depends only to x1, x2 function 

φ2, φ3 depends only to x1, x2, x3. 

The purpose of backstepping is the recursive design of a controller for the 

previous system by selecting appropriate virtual controllers. The virtual 

controller for the first equation of the system is x2 and is used to stabilize the 

first equations, the virtual controller for the middle equation is x3 and is used to 

stabilize the first two equations, and finally the controller for the last is u. We 

use separate virtual controllers in order to stabilize every equation of the system. 

In every step we select appropriate update laws. 

In classical backstepping, the output is selected as the state x1 and the 

purpose of adaptive control is to make this state to follow a desired trajectory 

x1d. 

Adaptive backstepping design is a Lyapunov based design [4]. The previous 

procedure can be applied only to systems that have (or transformed to) the 

previous form (strict feedback).    

 

ii) Adaptive Forwarding Design 

 

Forwarding ([9]) is something like backstepping but for strict feedforward 

systems. Let us introduce forwarding technique with an example such as: 

 
2

1 2 3 2

2
2 3 3

3

x x x x u

x x x u

x u

= + +

= −

=

&

&

&

 

 

In the previous example we do not have feedback paths.  

Firstly we stabilize the last equation ( 3x u=& ). We take the following Lyapunov 

function:  

2
3 3

1

2
V x=  and a feedback to stabilize the system is 3u x= − . With the previous 

we augment 3 3x x= −&  by the middle equation, and write our system in the 

cascade form: 

 

2 2 3

3 3

( )x x

x x

ϕ=

= −

&

&
 

 

where 3
2 3 3 3( )x x xϕ = −  is the interconnection term. 2 0x =&  is stable and 

3 3x x= −&  is GAS and LES. The next step is to construct Lyapunov function V2 

for the augmented system when V3 is given. 

After some specific steps we reach the following control law: 
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3
23

3 2 3 3( )(1 )
3

x
u x x x x= − − + + +      (13) 

 

 

3 Mixed Interlaced Forms 

a. Introduction and Linearization Method 

To begin with we consider the following third order mixed interlaced 

system and via an example we will introduce mixed interlaced forms [12]: 

 

1 3 1 32 3 1 2 31 3 1 3

2 2 2 23 2 2 1 21 2 2 3

3 1 3 1 3

( ) ( )

( ) ( )

( ) ( )

x x a c x x a c x x

x x a c x x a c x x

x x c x u t

β

β

β

= − + − + −

= − + − + −

= − + −

&

&

&

 (14) 

 

The previous system is not in feedback nor is it in feedforward form 

because of specific terms such as x1x2, x1x3, x2x3. The Jacobi linearization of the 

previous system is a chain of integrators.  

Instead from starting on top, we start from the middle equation and treat x3 

as virtual control and we want 2 2x x= −&  for stability. There exists a Lyapunov 

function of the form 
2

1 2

1

2
V x=  and a stabilizing feedback is 

2 2 23 2 1 23 2 1 2
3

21 2 21 2

x a c x a x x x
x

a x a c

β− + − +
=

−
 which is x3=a(x1,x2). We employ one step 

of backstepping to stabilize the middle equation augmented by the top equation 

of our system:  

 

 

1 3 1 32 3 1 2

2 2 23 2 1 23 2 1 2
31 3 1

21 2 21 2

31 3 1

2 2

( )

( )( )

( )

x x a c x x

x a c x a x x x
a c x

a x a c

a c x v

x x v

β

β

= − + − +

− + − +
+ − +

−

+ −

= − +

&

&

 (15) 

 

where the control x3  has been augmented to x3=a(x1,x2)+v. With v=0, the 

equilibrium (x1,x2)=(0, 0) is globally stable and forwarding yields the following 

Lyapunov function: 
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+ 

- 
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Neural Networks 

u 
Unknown Plant 

Dynamics 

e1�0 
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Plant Output 

Reference 

signal 
x1d 

2 1 1

2 2
2 1

2 3
2 2

lim ( )

1 1
,

2 2

1 1

2 31 1 2

V V x s

x

x xx x

ξ

ξ

= +

= +

−= + −

%

   (16) 

 

The feedback law: 2
2 1(1 )v x ξ= − − maintains the system globally stable and the 

augmented control is 

 

 

2 2 23 2 1 23 2 1 2
3 1 1 2

21 2 21 2

2
2 1 2 1 2 1

( , )

(1 ) ( , , )

x a c x a x x x
x a x x v

a x a c

x a x x

β

ξ ξ

− + − +
= + =

−

− − =

 (17) 

 

 

 
In order to stabilize our system we apply the backstepping technique. 

b. Mixed Interlaced Forms, Adaptive Control and Simulations 

Adaptive Control of dynamical systems has been an active area of research 

since the 1960’s. The system is described by the following figure: 

  

 

 

 

 

 

 

 

 

 

 

 

Because we have 3 states our controller design is described with Kaynak et al 

[1] controller in 3 steps. 

Step1: In this step we want to make the error between x1 and x1d (=yd) as 

small as possible. 

The previous is described by the following equation: 

 

1 1 1de x x= −      (18)  

       

 

We take the derivative of e1. After that we have: 
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1 1 1 1 1 1 1 1 2 1( ) ( )d de x x e f x g x x x= − ⇒ = + −& & & & &         (19)      

     

 

by using x2 as the virtual control input. The previous equation can be changed 

by multiplication and division with ( )1 1g x  to the following form: 

 

 1 1
1 1 1 1 1 1 1 2 1 1 1( )[ ( ) ( ) ( ) ]de g x g x f x x g x x− −= + −& &         (20)  

            

 

We choose the virtual controller as: 

 
1 1

2 2 1 1 1 1 1 1 1 1 1( ) ( ) ( )d dx x g x f x g x x k e− −= = − + −&        (21)  

    

 

where k1 is a positive constant. In order to approximate the unknown 

nonlinearities (functions f1(x1) and g1(x1)) we use RBF Neural Networks ([11]). 

A Neural Network based virtual controller is used as follows: 

 

2 1 1 1 1 1 1 1 1 1( ) ( )d dx x n x x k eθ ξ δΤ Τ= − + −&                 (22)         

    

 

where we have substituted the unknown nonlinearities  g1(x1)
-1

f1(x1) and g1(x1)
-1

 

with the RBF Neural Networks 1 1 1( )xθ ξΤ  and 1 1 1( )n xδ Τ  respectively based on 

Lyapunov stability ([6], [8]). 

We take the following adaptation laws (σ-modification) in order to avoid 

large values of the weights: 

 

1 11 1 1 1 1 1[ ( ) ]e xθ ξ σ θ= Γ −&     (23) 

1 12 1 1 1 1 1 1[ ( ) ]de n x xδ γ δ= Γ − −& &                                (24)  

   

 

with σ1, γ1 small and positive constants and Γ11=Γ11
Τ
>0, Γ12=Γ12

Τ
>0 are the 

adaptive gain matrices. 

 

Step 2: In this step we make the error between x2 and x2d as small as possible. 

The previous is described by the following equation: 

 

2 2 2de x x= −              (25)                                                      

     

 

We take the derivative of e2. After that we have:  
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2 2 2 2 2 2 2 3 2

1 1
2 2 2 2 2 2 3 2 2 2

( ) ( )

( )[ ( ) ( ) ( ) ]

d d

d

e x x f x g x x x

g x g x f x x g x x− −

= − = + −

= + −

& & & &

&
      (26)  

            

 

By taking the x3d as a virtual control input and by substituting the unknown 

nonlinearities 1
2 2 2 2( ) ( )g x f x−  and 1

2 2( )g x −  with the RBF Neural Networks 

2 2 2( )xθ ξΤ  and 2 2 2( )n xδ Τ  respectively based on Lyapunov stability ([6], [8]), 

we have: 

 

3 1 2 2 2 2 2 2 2 2 2( ) ( )d dx e x n x x k eθ ξ δΤ Τ= − − + −&          (27)  

              

 

We take the following adaptation laws (σ-modification) in order to avoid 

large values of the weights: 

 

2 21 2 2 2 2 2[ ( ) ]e xθ ξ σ θ= Γ −&  

2 22 2 2 2 2 2 2[ ( ) ]de n x xδ γ δ= Γ − −& &                 (28)              

               

 

with σ2, γ2 small and positive constants and Γ21=Γ21
Τ
>0, Γ22=Γ22

Τ
>0 are the 

adaptive gain matrices. 

 

Step 3(Final): In this step we make the error between x3 and x3d as small as 

possible. 

The previous is described by the following equation: 

 

3 3 3de x x= −                                                       (29)           

               

 

 We take the derivative of e3. After that we have:  

 

3 3 3 3 3 3 3 3

1 1
3 3 3 3 3 3 3 3 3

( ) ( )

( )[ ( ) ( ) ( ) ]

d d

d

e x x f x g x u x

g x g x f x u g x x− −

= − = + −

= + −

& & & &

&
         (30)              

 

Where u is the control input and by substituting the unknown nonlinearities 
1

3 3 3 3( ) ( )g x f x−  and 1
3 3( )g x −  with the RBF Neural Networks 3 3 3( )xθ ξΤ  and 

3 3 3( )n xδ Τ  respectively, we have: 

 

2 3 3 3 3 3 3 3 3 3( ) ( ) du e x n x x k eθ ξ δΤ Τ= − − + −&                  (31)                                                     
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We take the following adaptation laws (σ-modification) in order to avoid 

large values of the weights: 

 

3 31 3 3 3 3 3[ ( ) ]e xθ ξ σ θ= Γ −&  

3 32 3 3 3 3 3 3[ ( ) ]de n x xδ γ δ= Γ − −& &                    (32)                                                                     

with σ3, γ3 small and positive constants and Γ31=Γ31
Τ
>0, Γ32=Γ32

Τ
>0 are the 

adaptive gain matrices. 

In order to prove the stabilization of mixed interlaced systems we apply the 

previous described by [1] and we perform the following simulations: 

We make the assumption that c1>>x1, c2>>x2, c3>>x3 and 

a21=a32=β1=β2=β3=1, c1=9.99, c2=6.66, c3=3.33. Also we want our desired 

output to be yd=sin(t). 

Figs. 1-6 show the simulation results of applying the controller for tracking the 

desired signal yd. From figure 1 we can see that good tracking performance is 

obtained. Figure 2 shows the trajectory of the controller. Figure 3 shows the 

phase plane of the system. Figure 4 shows the error 1e , Figure 5 shows the error 

2e  and finally Figure 6 shows the error 3e . 

 

       
Fig. 1: The output of the system under adaptive controller. 
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Fig. 2: The trajectory of the adaptive controller. 

 

 
Fig. 3: The phase plane plot of the system. 
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Fig. 4: Error e1 

 
Fig. 5: Error e2 



Chaotic Modeling and Simulation (CMSIM)  3: 529-542,  2012 

 
541 

 
Fig. 6: Error e3 

 
4 Conclusion 

In this paper, we recognize a new form of systems that we call mixed 

interlaced form. We apply the well known backstepping and forwarding 

techniques via specific steps. Also Lyapunov functions can be selected to 

approve convergence and stability. A lot of systems have the mixed interlaced 

form. For example we can think systems in biological models that have many 

terms from different states. After the appropriate selection of the controller we 

can apply adaptive control to make the systems follow a desired trajectory. 

The tracking error is bounded and is established on the basis of the Lyapunov 

approach. Finally, only the states of the unknown plant which are related to the 

reduced order model are assumed to be available for measurement. 

The authors hope that the proposed approach would serve as a promising tool 

to analyze more complex systems. 
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