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1 Introduction

A history of a semigroup and a group action on tori and projective spaces can
be found among other in the book by A.G. Postnikov [1], in the paper by I.Ya.
Gol’dsheid, G.A. Margulis [2] and in the supplement by B.M. Gurevich, Ya.
G. Sinai [3] to the Russian translation of the English edition of the book by P.
Billingsley [4].

Here we review novel results and investigate actions and transformations
of (quantum) groups and semigroups on (quantum) spaces, present dynamical
systems and zeta functions arising from these spaces, actions and transforma-
tions, discuss their stochastic properties.

2 Dynamical systems from spaces

It is well known that one-dimensional projective space P1(Q) parametrize
the set of dynamical systems in such a way that for any rational point Q ∈
P1(Q), Q = (ab , 1), a, b ∈ Z, (a, b) = 1 we naturally assiciate dynamical system
(T, TQ). Here T = R/Z,TZ = (..., x−1, x0, x1, ...), xi ∈ T, X = {x = (xk) :
bxk+1 = axk for all k ∈ Z}, TQ : X → X. More generally, for any primitive
polynomial g(x) ∈ Z[x] of degree d ≥ 1 it is possible to construct its Frobe-
nius and companion matrices and define a homeomorphism TF of a compact
d−dimensional subgroup of Td. These considerations can be extended to ellip-
tic curves [5] and to abelian varieties. For elliptic curves authors of the paper
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[5] implement these by the following way. Let q ∈ Qp and log+ x denotes
max{log x, 0}. For a generic element x of Zp authors define q-transformation
Tq(x) (a p-adic analogue of the β-transformation). Then the topological entropy
of the p-adic β-transformation is given by h(Tq) = log+ |q|p ([5], Theorem 4.1).
If |q|p ≥ 1 then the map Tq is ergodic with respect to Haar measure for |q|p > 1
and is not ergodic for |q|p = 1 ([5], Theorem 4.2). Let Pern(Tq) denotes the
subgroup of Zp consisting of elements of period n under Tq. Let U be the set
of unit roots of Qp and q ∈ Qp \ U . Then

log |Pern(Tq)| = n log+ |q|p.

([5], Theorem 4.3). The authors use the topological entropy and measure the-
oretical arguments based on volume growth rate and arithmetic of Zp.

Let Q be a rational point of an elliptic curve over Q and let ĥ(Q) be the
global canonical height on rational points of the elliptic curve. Then with the
definitions and assumptions of the paper [5] and q = a/b = x(Q), (i) the en-

tropy of TQ is given by h(TQ) = 2ĥ(Q), and (ii) the asymptotic growth rate of
the periodic points is given by the division polynomial νn(x): log |Pern(TQ| ∼
log |bnνn(q)| as n → ∞. ([5], Theorem 5.2). In the case authors use also the
elliptic analogue of Baker’s theorem, which described in paper [6] and in paper
[7] .

3 Dynamical systems on probability spaces

Let (X,B, µ, T ) be a dynamical system on standard probability space with
T : X → X is measurable, almost surely one to one, preserves µ, for which
it is an ergodic transformation. Random dynamical systems relate a partial
case of bundle dynamical systems by I. Cornfeld, S. Fomin, and Ya. Sinai [8].
Measurable partition of the space X transforms the initial random dynamical
system into a symbolic dynamical system. We will present novel symbolic
dynamical systems and their applications.

4 Rigid and weakly mixing ergodic transformations

In papers [9] and [10] authors present resent results on genericity of rigid and
multiply recurrent infinite measure preserving and nonsingular transformations
and on measurable sensitivity. In the paper [11] authors investigate properties
of uniformly rigid transformations and analyze the compatibility of uniform
rigidity and measurable weak mixing along with some of their asymptotic con-
vergence properties. All spaces of the paper under review are considered si-
multaneously as topological spaces and as measure spaces. Presented results
concern either the measurable dynamics on the spaces or the interplay between
the measurable and topological dynamics. The notion of uniform rigidity was
introduced as a topological version of rigidity by S. Glasner and D. Maon [12].
Authors of the paper [11] consider functional analytic properties of uniform
rigidity that is similar to the properties of rigidity. Theorem 1 ([11]). Every
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totally ergodic finite measure-preserving transformation on a Lebesgue space
has a representation that is not uniformly rigid, except in the case where the
space consists of a single atom.

The proof of the theorem connects with results of authors of the theorem
that uniform rigidity and weak mixing are mutually exclusive notions on a
Cantor set, and follows from the Jewett-Krieger Theorem by K. Peterson [13].

5 Superrigidity for groups

The concept of superrigidity was introduced by G. D. Mostow [14] and by G.
A. Margulis [15] in the context of studying the structure of lattices in rank
one and higher rank Lie groups respectively. The notion of property (T) for
locally compact groups was defined by D. Kazhdan [16] and the notion of
relative property (T) for inclusion of countable groups Γ0 ⊂ Γ was defined by
G. Margulis [17]. Now consider the orbit equivalence (OE) superrigidity. One
of the first result of this type of superrigidity was obtained by A. Furman [18],
who combined the cocycle superrigidity by R. Zimmer [19] with ideas from
geometric group theory to show that the actions SLn(Z) on Tn(n ≥ 3) are
OE superrigid. The deformable actions of rigid groups are OE superrigid by
S. Popa [20]. The main result of the paper by A. Ioana [21] is the Theorem A
on orbit equivalence (OE) superrigidity. As a consequence of Theorem A the
author of the paper [21] can constructs uncountable many non-OE profinite
actions for the arithmetic groups SLn(Z)(n ≥ 3), as well as for their finite
subgroups, and for the groups SLm(Z) × Zm(m ≥ 2). The author deduces
Theorem A as a consequence of the Theorem B on cocycle superrigidity.

Let the action of Γ on X be a free ergodic measure-preserving profinite
action (i.e., an inverse limit of actions Γ on Xn with Xn finite) of a countable
property (T ) group Γ (more generally, of a group Γ which admits an infinite
normal subgroup Γ0 such that the inclusion Γ0 ⊂ Γ has relative property (T )
and Γ/Γ0 is finitely generated) on a standard probability space X. The author
prove that if ω : Γ ×X → Λ is a measurable cocycle with values in a countable
group Λ, then ω is a cohomologous to a cocycle ω

′
which factors through the

map Γ × X → Γ × Xn, for some n. As a corollary, he shows that any free
ergodic measure-preserving action Λ on Y comes from a (virtual) conjugancy
of actions.

6 Equidistribution for orbits of nonabelian semigroups
on the torus

Furstenberg [22] and Berent [23] have investigated the action of abelian semi-
groups on the torus Td for d = 1 and d > 1 respectively. Their results answer
problems raising by H. Furstenberg [24]. Authors of the paper [25] extend to
the noncommutative case some results of Furstenberg and Berent
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7 Zeta functions from spaces and dynamical systems

Recall that Dedekind has defined zeta function for polynomials over prime
finite field. The zeta function is trivial and equal to 1

1−pz . However, combin-
ing the zeta function with Chebyshev-Mobius inversion formula we obtain the
number of monic irreducible over Fp polynomials of natural degree m. Rie-
mann and Dedekind zeta functions are first examples of motivic zeta functions.
The authors of the paper [26] investigate sufficient conditions for (i) the exis-
tence of trace formulae for the Reidemeister number of a group endomorphism;
(ii) the rationality of the Reidemeister zeta function and the convergence of
the Nielsen zeta function; (iii) the equality of Reidemeister torsion of a group
endomorphism to a special value of the Reidemeister zeta. This interesting sur-
vey[26] includes recent results on trace formulae, rationality and convergence of
zeta functions and relations between special values of zeta functions and some
simply homotopy invariants. The general setting of the paper [27] is braided
zeta functions in q-deformed geometry. In the framework authors define a zeta
function for any rigid object in a ribbon braided category. In the ribbon case
they define braided Hilbert series for objects in an Abelian braided category.
We will present some other types of zeta-functions.

8 Dynamical Systems from Arithmetic Surfaces

8.1 Sato-Tate case

Let y2 = f(x), f(x) = x3 + cx + d be a cubic polynomial in prime finite field
Fp. For the number #Cp of points of the curve C : y2 = f(x) in Fp the well
known formula

#Cp =

p−1∑
x=0

(
1 +

(
f(x)

p

))
,

take place, where
(
f(x0)
p

)
is the Legendre symbol with a numerator which is

equal to the value of the polynomial f(x0) in point x0 ∈ Fp. It is ease to see
that #Cp = p− ap, where

ap = −
p−1∑
x=0

(
f(x)

p

)
If C is the elliptic curve , then the number of points #C(Fp) of the projective
model of the curve in Fp is represented by the formula #Ep = 1 + p − ap,
where ap = 2

√
p cosϕp, If C is not the elliptic curve, then the value ap is equal

1, −1 or 0 and ease to compute. In both cases compute: ϕp = arccos(ap/2
√
p)

and reduce it to the interval [0, π].
Let E be an elliptic curve over rational numbers Q which does not ad-

mit complex multiplication. Sato and Tate [28] have given computational and
theoretical evidences suggesting the distribution of angles ϕp.

Recently L. Clozel, M. Harris, N. Shepherd-Barron, R. Taylor and their
colleagues have proved the Sato-Tate conjecture for all elliptic curves E over
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Q (and over some its extensions) satisfying the mild condition of having mul-
tiplicative reduction at some prime.

Langlands conjectured that some symmetric power L−functions extend to
an entire function and coincide with certain automorphic L−functions.

Theorem (Clozel, Harris, Shepherd-Barron, Taylor). Suppose E is an ellip-
tic curve overQ with non-integral j−invariant. Then for all n > 0, L(s, E, Symn)
extends to a meromorphic function which is holomorphic and non-vanishing for
Re(s) ≥ 1 + n/2.

These conditions suffice to prove the Sato-Tate conjecture.
Theoretical considerations give
Proposition EC. It is possible the arithmetic modeling of the Brownian

motion by quantity ap.

8.2 Kloosterman sums

Let

Tp(c, d) =

p−1∑
x=1

e2πi(
cx+ d

x
p )

1 ≤ c, d ≤ p− 1; x, c, d ∈ F∗
p

be a Kloosterman sum.
By A. Weil estimate

Tp(c, d) = 2
√
p cos θp(c, d)

There are possible two distributions of angles θp(c, d) on semiinterval [0, π) :

a) p is fixed and c and d varies over F∗
p; what is the distribution of angles

θp(c, d) as p→∞ ;

b) c and d are fixed and p varies over all primes not dividing c and d.

For the case a) N. Katz [29] and A. Adolphson [30] proved that θ are dis-
tributed on [0, π) with density 2

π sin2 t.
Let

cd 6≡ 0 mod p, Tp(c, d) =

p−1∑
x=1

e2πi(
cx+ d

x
p )

the Kloosterman sum. By A. Weil, Tp(c, d) = 2
√
p cos θp(c, d). Compute

Tp, cos θp, θp and reduce θp to the interval [0, π]. Experiments demonstrate ran-
dom behavior of angles of Kloosterman sums.

Theoretical considerations give
Proposition KS. It is possible the arithmetic modeling of the Brownian

motion by Kloosterman sums.
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Conclusions
We have presented a review of new results on actions and transformations

of (quantum) groups and semigroups on (quantum) spaces, have presented
dynamical systems and zeta functions arising from these spaces, actions and
transformations, discussed their stochastic properties.
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