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Abstract. This study addresses problems: what determines coherent structures in
mixing patterns and what are main elements of the coherent structures. We restrict
our consideration to finite times and are mainly interested in how to organize steady
or periodic flow and where to put the blob (or blobs) in order to achieve the best
result in that finite time. Knowing types and positions of periodic points coherent
structures in distributive mixing patterns could be classified. These structures are
connected with hyperbolic and elliptic periodic points and lines for three-dimensional
mixing flows.
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1 Introduction

We consider the laminar mixing process in a two-dimensional annular wedge-
shaped cavity and in a three-dimensional creeping flow of a viscous incompress-
ible fluid contained in a finite circular cylinder, induced by a prescribed periodic
motion of the end walls. Here we apply a method to locate periodic structures
and manifolds. In contrast to two-dimensional flow of an incompressible fluid,
for which the equations of motion of an individual passive particle can always be
written in Hamiltonian form and for which well-developed methods of Hamil-
tonian mechanics can be applied, the study of three-dimensional mixing flows
encounters considerable difficulties. An important characteristic of both two-
dimensional and three-dimensional flows, that is closely related to the problem
of determination of the regions of regular behaviour being barriers for the mix-
ing process (Aref[1]), is the location of periodic points (or fixed points in the
hyperplane of the Poincaré map). The determination and classification of peri-
odic points in three-dimensional flows is a complicated problem. Furthermore,
in three-dimensional flows these points can form one-dimensional periodic lines.
A complete classification of the periodic points can be performed in accordance
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with three eigenvalues of the linearized matrix of the Poincaré map, and spe-
cific behaviour of the map near such a point can be associated with its type [4].
Generally, the periodic points of three-dimensional flows could be character-
ized by a much richer variety, compared to the points of two-dimensional flows,
in which only three possible types exist. However, if in a three-dimensional
flow the point lies on a periodic line it is not significantly different from peri-
odic points in two-dimensional flows. In the three-dimensional case, the flow
near a periodic line is topologically similar to the flow near a periodic point in
two-dimensional case.

2 Stirring of a viscous incompressible fluid

2.1 Mixing in a two-dimensional annular wedge-shaped cavity

As a first example of mixing, we consider a two-dimensional creeping flow of
an incompressible viscous fluid in an annular wedge cavity, a ≤ r ≤ b, |θ| ≤ θ0,
driven by periodically time-dependent tangential velocities Vbot(t) and Vtop(t)
at the curved bottom and top boundaries, when a radius r is r = a and r = b,
respectively. The side walls, a ≤ r ≤ b, |θ| = θ0 are fixed. We consider
a discontinuous mixing protocol with the bottom and top walls alternatingly
rotating over an angle Θ in clockwise and counterclockwise directions, respec-
tively. More specifically, we consider the case

Vbot(t) =
2aΘ

T
, Vtop(t) = 0, for kT < t ≤

(
k +

1

2

)
T,

Vbot(t) = 0, Vtop(t) = −2bΘ

T
,

for

(
k +

1

2

)
T < t ≤ (k + 1)T, (1)

where k = 0, 1, 2, .... Θ is the angle of wall rotation and T is the period of the
walls motion. The radial and azimuthal velocity components ur and uθ can be
expressed by means of the stream function Ψ(r, θ, t) as

ur =
1

r

∂Ψ

∂θ
, uθ = −∂Ψ

∂r
. (2)

For a quasi-stationary creeping flow in the Stokes approximation the stream
function Ψ satisfies the biharmonic equation

∇2∇2Ψ = 0, (3)

with the Laplace operator ∇2 and the boundary conditions

Ψ = 0,
∂Ψ

∂r
= −Vbot, at r = a, |θ| ≤ θ0, (4)

Ψ = 0,
∂Ψ

∂r
= −Vtop, at r = b, |θ| ≤ θ0, (5)
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Ψ = 0,
∂Ψ

∂θ
= 0, at a ≤ r ≤ b, |θ| = θ0. (6)

Therefore, we have the classical biharmonic problem for the stream function
Ψ with prescribed values of this function and its outward normal derivative at
the boundary.

The system of ordinary differential equations

dr

dt
=

1

r

∂Ψ

∂θ
, r

dθ

dt
= −∂Ψ

∂r
(7)

with the initial conditions r = rin, θ = θin at t = 0 describes the motion of
an individual (Lagrangian) particle occupying the position (r, θ) at time t. In
fact, we have steady motion of the particle within time intervals (kT, kT +
T/2), (kT + T/2, kT + T ), with velocities that instantaneously change at tk =
kT/2, (k = 0, 1, 2, ...).

It is easy to check that, within these intervals, when the stream function
does not explicitly depend on time, system (11) has the first integral Ψ(r, θ) =
const. Therefore, this system is integrable and a particle initially at (rin, θin)
moves along a steady streamline during the first half period (0, T/2). At the
instant t = T/2 when the forcing is switched, the topology of streamlines is
changed, and the particle instantaneously moves along a new streamline during
the second half of period (T/2, T ), and so on. The spatial position of the
particle is continuous, but its velocity experiences a discontinuity at each half
period.

It is because of these abrupt periodical changes in the velocity field that the
question of stability and instability of the solution of system (11) and possibility
of chaotic advection (Aref[1]) naturally arises.

The problem of mixing of a certain amount of dyed passive material (the
blob), as considered here, consists of tracking in time the positions of particles
initially occupying the contour of the blob, say, the circle of radius R with
the center at (rc, θc). We assume that the flow provides only a continuous
transformation of the initially simply connected blob. Therefore, the deformed
contour of the blob gives the whole picture of the mixing.

This wedge-cavity flow problem has been solved analytically by Krasnopol-
skaya et al.[2]. Their analytical solution was used for the numerical evolution
of the interface line between the marker fluid and the ambient fluid, which was
carried out by the dynamical contour tracking algorithm.

2.2 Statement of mixing problem in a cylinder

Consider the three-dimensional Stokes flow in a finite cylinder that occupies
the domain 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H in the cylindrical coordinates
(r, θ, z). In terms of the velocity vector u and the pressure p, the Stokes flow
of an incompressible viscous fluid (inertia terms being negligible) is governed
by

µ∇ 2 u = ∇ p, ∇ · u = 0, (8)

where ∇, ∇·, and ∇ 2 stand for standard differential operations of gradient,
divergence, and the Laplacian operator, respectively, and µ is the coefficient
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of shear viscosity of the fluid. The flow is generated by periodic motion of the
cylinder end wall at z = H, while the cylinder wall r = a remains fixed. In
terms of Cartesian components, with the positive x-axis coinciding with the
direction θ = 0, the velocity vector u = u ex + v ey + w ez takes the following
form at the domain boundaries:

u = utop(t) ex + vtop(t) ey, z = H, 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π , (9)

In what follows we consider one typical protocol of the wall motions with a con-
stant velocity V and with period T (only the non-zero velocities are presented
below). Protocol consists of two ‘zigzag’ steps of the top wall only:

utop = V, 0 ≤ t ≤ 1

2
T, vtop = V,

1

2
T ≤ t ≤ T. (10)

Note that the protocol is discontinuous, although the motion of the fluid
inside the cylinder is steady at any time within the whole period. Since the
inertia forces are neglected in the governing equations (8), these steady motions
are established instantaneously. Because of the linearity of system (8) and the
absence of time dependent terms, the velocity field in the cylinder is periodic
with period T .

Important for further analysis is the dimensionless kinematic parameter
D = V T/a, which represents the ratio of two typical time scales of any given
protocol: the forcing period T and the advection time a/V (for a wall travelling
over a typical distance a with a velocity V ).

The mixing process taking place is due to advection of passive material
tracers by the velocity field u and is hence governed by the three-dimensional
system of ordinary differential equations

dx

dt
= u (x, y, z, t),

dy

dt
= v (x, y, z, t),

dz

dt
= w (x, y, z, t), (11)

with initial conditions x = x0, y = y0, z = z0 at t = 0.
A full analytical solution for the linear vector boundary problem for the

velocity field has been constructed by Meleshko et al.[5]. by the method of
superposition. The principal idea of the method consists in representing the
velocity field in the finite cylinder as the sum of two velocity fields: one for an
infinite layer with thickness equal to the finite cylinder height, and another for
an infinite cylinder with a radius equal to that of the original cylinder. Veloc-
ities in these simple domains are represented in the form of ordinary Fourier
series with sets of arbitrary coefficients on the complete systems of Bessel and
trigonometric functions, respectively. These series both identically satisfy the
governing equation inside the domain and have sufficient functional arbitrari-
ness for fulfilling any boundary conditions on the top and bottom walls and
on the lateral surface of the cylinder, respectively. Because of the interdepen-
dency, the expression for a coefficient of a term in one series will depend on all
the coefficients of the other series and vice versa. The final solution involves
solving an infinite system of linear algebraic equations, providing the relations
between applied velocities and the coefficients in two ordinary Fourier series
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on the complete systems of Bessel and trigonometric functions in radial and
axial directions, respectively. The general theory of such infinite systems pro-
vides leading terms in the asymptotic behaviour of coefficients. An established
technique was used to considerably improve the convergence of the series on
the whole boundary, including the rims. The numerical results presented in
Meleshko et al.[5] reveal that the boundary conditions for the case of a lid-
driven cavity are satisfied within the accuracy O(10−3) in comparison with the
prescribed velocity, even at the corner point.

The problem of accurate determination of the interface is obviously very
complicated, as it moves and deforms with the flow. There exist many tech-
niques to deal with flows containing sharp fronts, which can be divided into two
basic strategies – front-capturing and front-tracking. Detailed reviews of the
front-tracking methods are provided by Krasnopolskaya et al.[3] and Malyuga
et al.[4].

2.3 Periodic points and lines

A periodic point P of period n can be classified as an elliptic, hyperbolic, or
parabolic point depending upon the structure of the surrounding flow field.
This classification is based on the behaviour (in the course of time) of an
infinitesimally close neighbouring point P + dx0. After n periods, the latter
arrives at P+dxn = Φn

T (P+dx0), upon linearization about the periodic point
P = Φn

T (P), adding up to
dxn = F · dx0 (12)

with F = ∂Φn
T /∂x|P the real Jacobian matrix. According to (12), stable and

unstable structures may emerge, depending on the properties of the matrix F .
In order to analyse the nature of the map near P, the relation (12) is rewritten
in the canonical (or Jordan) form

ηn = S · η0 S = R−1 · F ·R η = R−1 · dx (13)

with R the transformation matrix relating the local Cartesian (dx, dy, dz) to
the canonical (η(1), η(2), η(3)) frame of reference.

In two-dimensional systems, elliptic points are surrounded by islands, seal-
ing off the elliptic region from the remainder of the flow domain and in conse-
quence acting as transport barriers. The hyperbolic points xh are accompanied
by stable manifolds W s(xh) and unstable manifolds Wu(xh) that merge either
into closed orbits or display transversal intersection. The former phenomenon
is reminiscent of the aforementioned elliptic islands by obstructing communi-
cation between flow regions, whereas the latter brings about excessive stretch-
ing and folding of material elements, indicative of chaotic advection [1]. In
the three-dimensional domain of interest the islands and manifolds, associated
with periodic points on the elliptic and hyperbolic segments of the periodic line,
readily merge into tubular objects and intricate surfaces, although possessing
essentially two-dimensional characteristics.

The periodic lines of period-2 of the flow generated in a cylinder are shown
in figure 1
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Fig. 1. The periodic lines of period-2 in the flow in the cylinder for D = 5. Thick
and thin lines represent the elliptic and hyperbolic segments, respectively [4].

Such lines were found to exist only for D > 2. It is worth noting that each
of the two lines returns into itself after two periods. Although any periodic
point of second order exists always in combination with another one, they can
belong to the same periodic line of the second order.

3 Coherent structures

The results presented correspond to one typical wedge cavity with θ0 = π/4
and b/a = 2. Using the dimensionless parameter H = Θ/θ0 and a fixed value
for the period T , the discontinuous mixing protocol (1) is completely defined.
We restrict our consideration to the case H = 4. The accurate Lagrangian
description of the contour line provides the possibility to construct an Eule-
rian representation of the mixture. Figure 2(a) shows the mixed state with
the positions of the initially circular blob (green area) after six periods (red)
and after twelve periods (blue). There are two main components of the coher-
ent structure in the mixed state: one component formed by the thin filaments
with their striation decreasing in time and the other one by the small ‘rub-
bery’ region, representing the unmixed part of the blob. What creates this
structure? First of all, the invariant unstable manifold corresponding to the
hyperbolic point of period-1 which is located in the centre of the original green
blob (indicated by a black square in the middle in figure 2b). This manifold,
presented in the figure 3(a), serves as a skeleton which forms the first main
coherent structures of the deforming blob. The origin of the ‘rubbery’ coherent
structure can be explained in terms of the existence of elliptic periodic points of
period-6, period-2 and period-6, respectively, which are shown as white boxes
in figure 2(b). In the upper part of the green circular blob (figure 2b), a small
black box indicates the position of the hyperbolic fixed point of period-6 and
therefore, the ‘rubbery’ region nearby this point will be destroyed completely
in course of time.
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Fig. 2. Mixing patterns: (a) in the whole cavity; (b) in the region of the initial blob
position.

The resulting deformation after twelve periods of small circular domains
surrounding these higher order periodic points are shown in figure 3(b). The
small circular blob surrounding the hyperbolic point transforms after twelve
periods into a thin red line, while the three circular bolbs surrounding the
elliptic points only slightly deform (the so-called ‘rubbery’ regions).

4 Conclusions

Coherent structures in distributive mixing patterns are classified. These struc-
tures are connected with hyperbolic and elliptic periodic points (and lines) of
order-1 or higher.
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Fig. 3. The elements of coherent structures: (a) part of unstable manifold of the
hyperbolic point of period-1 in the centre of the initial blob; (b) deformation patterns
of small circular blobs surrounding periodic points of higher order.
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