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Abstract. The Newtonian and special-relativistic Lyapunov exponents are compared for 

a low speed system – the periodically-delta-kicked particle. We show that although the 

agreement between the Newtonian and special-relativistic transient Lyapunov exponents 

rapidly breaks down initially, they converge to values which are very close to each other.  
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1  Introduction 
 

It is conventionally believed [1-3] that if the speed v of a dynamical system 

is low compared to the speed of light c, that is, v << c, then the special-

relativistic dynamical predictions for the system will be well-approximated by 

the Newtonian predictions. However, it was shown in recent numerical studies 

[4-9] that, contrary to the conventional belief, the agreement between the 

Newtonian and special-relativistic dynamical predictions for a single trajectory 

[4-7] and for an ensemble of trajectories [8,9] can break down completely 

although the speed of the system is low. Here, we extend the previous studies 

[4-9] to a comparison of the Newtonian and special-relativistic predictions for 

the Lyapunov exponent of a prototypical chaotic Hamiltonian system – the 

periodically-delta-kicked particle – at low speed. Details of the system and 

calculations will be given next, followed by the results and discussion. 

 

 

2  Method 
 

In the Newtonian framework, the equations of motion for the periodically-

delta-kicked particle are reducible to an exact mapping, which is called the 

standard map [10,11]: 
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where Xn and Pn are, respectively, the dimensionless scaled position and 

momentum of the particle just before the nth kick (n = 1, 2, …), and K is a 

dimensionless positive parameter.  

 

In the special-relativistic framework, the equations of motion for the 

periodically-delta-kicked particle are also reducible to a mapping, which is 

called the relativistic standard map [12,13]: 
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where β, like K, is also a dimensionless positive parameter. 

 

The transient Lyapunov exponent for a map is generally defined [14] as 
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where Mn = Jn Jn-1 … J2 J1 and Jn is the Jacobi matrix. In the limit n → ∞, λn 

yields [14] the largest Lyapunov exponent. A hallmark of chaos is the existence 

of a positive Lyapunov exponent. For the standard map in Eqs. (1) and (2), the 

Jacobi matrix is 
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For the relativistic standard map in Eqs. (3) and (4), the Jacobi matrix is 
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In each theory, the transient Lyapunov exponent [Eq. (5)] is calculated 

twice to determine its accuracy. The calculation for the transient Lyapunov 

exponent is first performed in 32-significant-figure precision and then repeated 

in quadruple (35 significant figures) precision. The accuracy of the transient 

Lyapunov exponent is determined by the common digits of the 32-significant-

figure-precision and quadruple-precision calculations. For example, if the 

former calculation yields 1.234… and the latter calculation yields 1.235…, the 

transient Lyapunov exponent is accurate to 1.23. 

 

 

3  Results and discussion 
 

Here we will present an example to illustrate the typical result. In this 

example, X0 = 0.5, P0 = 99.9, K = 7.0 and β = 10
-7

. For these initial conditions 

and parameters, both the Newtonian and special-relativistic trajectories are 
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chaotic. In this case, the speed of the particle is low, about 10
-5

c, up to 8800 

kicks. 

 

Fig. 1, which plots the Newtonian and special-relativistic transient 
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Fig. 1. Newtonian (squares) and special-relativistic (diamonds) transient 

Lyapunov exponents versus kick. 

 

Lyapunov exponents for the first 30 kicks, shows that the two transient 

Lyapunov exponents agree with each other for the first 10 kicks but the 

agreement breaks down from kick 11 onwards. The agreement between the 

Newtonian and special-relativistic transient Lyapunov exponents breaks down 

rapidly because the difference between the two grows, on average, 

exponentially – see Fig. 2. The exponential growth constant of the difference 

 

-20

-15

-10

-5

0

0 5 10 15 20

n

ln
(d

if
fe

re
n

c
e
 o

f 
λ n

)

 
Fig. 2. Difference between the Newtonian and special-relativistic transient 

Lyapunov exponents versus kick. 
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between the two transient Lyapunov exponents, measured from kick 1 to kick 

10, is 0.96.  

 

However, asymptotically, the Newtonian and special-relativistic transient 

Lyapunov exponents converge to values which are very close to one another. In 

particular, at kick 8800, the Newtonian and special-relativistic transient 

Lyapunov exponents are both accurate to 1.27, which is quite close to the 

analytical estimate [10] of the asymptotic Newtonian Lyapunov exponent given 

by ln(K/2) = 1.253. This result is surprising since the chaotic trajectories 

predicted by the two theories agree only for the first 16 kicks, which suggests 

that the two asymptotic Lyapunov exponents should not agree. 

 

 

Conclusions 
 

We have shown that although the agreement between the Newtonian and 

special-relativistic transient Lyapunov exponents rapidly breaks down initially, 

the asymptotic special-relativistic Lyapunov exponent is well-approximated by 

the asymptotic Newtonian value. The same result should hold for other low-

speed chaotic Hamiltonian systems since the periodically-delta-kicked particle 

is a prototype. 
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