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Abstract.  
We discuss the 2-component model of population growth when different types of 

dynamics are attributed to rural and urban population respectively. We suppose the birth 
rate to be higher for rural areas, and death rate to dominate for cities. The flow between 

areas compensates these effects. This approach can reduce the number of parameters 

usually used for population growth behavior. We also discuss the socio-economic aspects 

of the model: the ability to control population size by adjusting the flow of people from 
the city to the countryside, and the trends in the urban and rural population. Finally the 

Earth population model is proposed.  

 

Keywords: population growth, chaotic simulation, modeling of socio-economic 
processes.  

 

1. Introduction 

The problem of numerical simulation of population dynamics attracts a 

lot of attention in both natural and social sciences. Particularly this issue was 

supposed to be of great importance when it was proved that the population 

growth rates were increasing, and the simplest modeling of such dynamics 

inevitably leads to overpopulation of the planet (eg, a Malthusian crisis). 

Furthermore, a precise date of overpopulation was esteemed as 2004.  

Thus, the “overpopulation problem” initiated a thorough statistical 

study of the dynamics of population growth, as well as many theoretical works 

arose, clarifying model representation of such dynamics. Along with Malthus 

classic work, it should be mentioned Verhulst model [1], Kapitsa model [2], 

Forrester world-system model [3] and many others. As it turned out, the rate of 

population growth crucially determines the growth rate of GDP, and this fact 

has largely spurred interest in the subject [4,5].  

The most interesting dynamics is connected with so called 

“demographic transition point” when population growth sharply decreases and 

number of people achieves stable value. At the same time, all proposed model 

are unlikely to describe the entire dynamics of the population: the explosive 

growth of the initial time, saturation stage (demographic transition point) and 

then subsequent stabilization of the population. Statistical data are used to adjust 
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the model, and often numerical simulation is reduced to finding appropriate 

coefficients that would fit the observed results (see, e.g. [6]). 

We argue that much more productive approach may be based on 

physical arguments; in particular, we believe that the population should be 

considered as two-phase system – “rural population” and “urban population”, 

with each phase to behave under its own laws of growth, having, however, a 

flow between two phases. This view of the population dynamics growth can 

decrease the number of arbitrary parameters in the model, and also give 

additional arguments and levers to control the pace of population growth that is 

important for countries experiencing problems with overcrowding and/or 

depopulation challenges. In addition, it becomes possible to construct a 

universal model describing population dynamics on the Earth. 

 In this paper we propose and discuss the 2-component model of 

population growth when different types of dynamics are attributed to rural and 

urban population respectively. We exclude from consideration the initial stage 

of human civilization, when the population was too small to introduce residents’ 

differentiation, and not consider the case of population stabilization. 

 We assume that the entire population can be divided into two relatively 

independent groups (phases), focused respectively on the intensive and 

extensive ways of development - urban and rural areas. Note that these concepts 

are not geographical, and probably reflect the attitude of the population to the 

production of wealth and investing in future generations and lifestyles. The most 

important characteristic that allows extracting these two groups, apparently, is 

the population density per square kilometer. The problem to calculate/evaluate 

this value would be another interesting task that we will not consider in our 

work.  

 

2. Statement of the problem 

We suppose there is a closed area (no emigration) with an unlimited 

resources supply (i.e., country). Let us denote urban population as x, the rural 

population as y, and the time variable as t. 

Then, in the general case, we can write 

   

   



,,,,

,,,,

yxwyxg
dt

dy

yxwyxf
dt

dx





   (1) 

Here   is the institutional parameter responsible for the particular worldview 

of people and their relationship to birth, death, change of residence, and taking 

into account both objective (laws and restrictions) and subjective (the desire to 

move to the big city, or, conversely, the nature) factors. The functions 

describing the change of the urban population and the rural population are f and 

g respectively. The function of the population flow from one community to 

another is w. We stress that function w is greatly influenced by authorities, and 

can differ from country to country. Note that time is not explicitly included in 
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the functional relationship. Our task is to study the possibility of governing the 

dynamics of the system changing function w (i.e., changes in public policy). 

 Using qualitative considerations (based on common approach to 

describe the dynamics of living organisms like predator-prey system, the game 

"Life", etc.) we can conclude that for a fixed urban population x function w(y) is 

strictly increasing function without saturation (i.e. is convex and the derivative 

does not change its sign). The qualitative form of the function w(y) is shown in 

Figure 1a. Similarly, in the case of constant values of rural population y we 

construct qualitative form of the function w (x), the population flow increases 

linearly for small values of x and subsequently begins to decrease due to 

resource constraints and increasing population density in the city (Fig. 1b). 

 

  
Typical behavior of w(y), x3> x2> x1 .   Typical behavior of w(x), y3>y2>y1 .. 

Fig. 1. The behavior of the function w. 

 

Based on the qualitative analysis of the figures 1a,b we propose the 

following form of the function w, satisfying all the properties listed above: 

 
22

,,






x

xy
yxw    (2) 

Here the numerator xy is proportional to the number of meetings between urban 

and rural residents, that can be treated as a "reassurance" of a resident to change 

his/her address with probability  . The denominator in the formula (2) 

imposes restrictions on the movement of villagers into the town with a large 

urban population. In extreme cases, when the frequency of meetings has no 

effect on the decision of the villagers move to the city, all of them with some 

degree of probability take the decision to move. However inures limiting factor 

associated with the limited space and high population density in urban areas, 

which is directly proportional to x
2
. Term 

2  is introduced to eliminate 

peculiarity at x=0, and reflects the minimum number of people needed the 

population becomes “city”. Estimates of population dynamics (parameter fitting 

formula for hyperbolic growth) give us the number of 60-70 thousand people 

(the size of the human community, when main role play statistical factors rather 

than personal ones). 

For the sake of convenience, we will assume the function w always 

positive, but in general negative function is also possible, and it would represent 

the flow in reverse (from city to the countryside). 



Zhulego and Balyakin 196 

  Thus, the proposed model reduces the institutional parameter  to two 

parameters   and  . Note that we do not consider the simplest case when 

w=const. Let us choose the functions f and g in the simplest form:  

axf  , 2cybyg      (3) 

The meaning of this choice is that the urban population decreases, while the 

rural population is growing, but there is a limit due to the finite resources. In 

practice, the choice of functions (3) permits us to formulate one of the 

differences between urban and rural areas: the countryside is a source of 

replenishment of the population, it possesses a positive population growth, and 

the city is characterized by a decline in population, as it is more inclined in the 

production and creation tools/services, both for city’s sake and for the village.  

Thus, the proposed two-component (two-phase) model can be rewritten 

in a following form: 
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   (4) 

These equations however, do not exhibit complex behavior, and only 

have stable points solutions; the model initially contains no "points of 

demographic transition" or “overpopulation problem”. This is close to the 

reality, but needs some improvement: we assumed that the response of the 

system is instantaneous for variables x and y. To account for the effects 

associated with the maturation of people, and make the complex dynamics 

possible, we take into account the presence of delay in the system. Namely, we 

rewrite system (4) as a 
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   (5) 

The meaning of the last term in this case is that the move from rural to 

urban areas is carried out by adults, usually without family. Accordingly, the 

decision shall be taken in the "meetings" with the same people over the age of 

the city (almost, it comes to comparing features/lifestyles in the countryside and 

in the city for people of the same age group). At the same time limiting factor 

(the denominator in the last term) still depends on the current urban population.  

Also to reduce the number of control parameters we use following 

renormalization. 

yyxxtt  ,,   
And introducing the notations: 

2,,,   DcCbBaA  
Then, omitting the primes in the new variables, we obtain the system: 
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System of equations (6) will be the final mathematical formulation of the 

proposed model.  

 From the physical meaning of the system, all variables must be positive 

(on the parameters A, B, C, D this requirement was imposed initially). Lag time 

now is always 1. In numerical simulation we expect that the most typical regime 

still to be stationary mode or with mild oscillations near the equilibrium point 

(the latter is quite typical of early human societies lived slash agriculture, where 

the population is growing at the beginning, and then, because of the 

impoverishment of resources began to decrease).  

 This model contains now modes of complex dynamics, they are 

possible in this system due to the presence of external feedback. Oscillatory or 

"chaotic" modes in this system are associated with huge costs (depopulation in 

towns or villages, the collapse of infrastructure, etc.) In practice, if a 

management decision could transfer the system from stable stationary mode to 

complex dynamics, it would mean that the proposed action is a mistake.  

Let us estimate the numerical values of the parameters in the system (6). 

The parameters A, B, C are responsible for the share increase (decrease) of the 

population in a time where, in comparison with available statistics, we find that 

they all vary from zero to one. Greatest arbitrariness is related to the choice of 

the parameter D, because it depends on a set of institutional factors such as 

persuasion factor   or  .  
 

3 The stability points analysis 

Let us analyze the system (6) for stability. There are always two trivial 

solutions: x=y=0, and  х=0, CBy  . The first solution corresponds to the lack 

of human civilization or the initial point, and second corresponds to collapse of 

urban civilization. For the classification of other solutions we obtain the 

following equation for fixed points (recall that within the framework of our 

model x> 0): 

 12  x
D

A
y ,      02 224  BDCAxDxBDCACAx   (7) 

To find the exact analytically solution in this case is impossible, 

however, we can give the following estimates.  If  CA-BD> 0, the solutions of 

(7) does not exist. If CA-BD <0, but 2CA-BD> 0, then there is one solution, but 

if  2CA-BD <0, it is possible one or the two solutions. Type the appropriate 

parameter plane shown in the figure below. We note that there are 3 areas that 

can perform different dynamics. For the first area with 2 stationary points one of 

them is always unstable, thus resulting regime is expected to be constant. In the 

second area 2 different stable solutions are possible. And in the last area 



Zhulego and Balyakin 198 

complex dynamic and interchange between different stable stationary points are 

possible. 

 
Fig. 2. Parameter plane for stationary points at Ox-axis. Stability analysis. 

 

4. Numerical simulation 

Further we will discuss the results of numerical simulations conducted 

by the Runge-Kutta of 4th order. Time step is 01.0dt , and the parameters 

values are given in figure captions. Note that at this stage we do not set the task 

to find the exact quantitative relationship between real data and parameters used 

for computer modeling,  we are focusing on the opportunity to effectively 

control the dynamics, to change between regimes, etc. In numerical simulations 

we proceed as follows: for the time 1 (dimensionless time delay) we 

numerically solve the system (6) without delay, and starting at time 1, we 

consider the term with delay. Thus we can avoid the need to set the initial 

conditions in the interval (0, 1). 

Below we represent the parameter plane for fixed values of A, B with 

varying D. We note a good agreement with theoretical calculations (compare 

fig. 2 and 3). In the lower region, where the number of fixed points is large, it is 

possible to realize the complex dynamics. Thus, we mark the area of chaotic 

oscillations with red, and periodic oscillations with different period with green. 

Unstable (nonphysical) behavior is also present. We note that the region of 

periodic oscillations is adjacent to the area of chaotic behavior, hence the 

periodic oscillations in the system can be regarded as precursors of the onset of 

chaos and/or unstable solutions. The last ones due to the nature of studied 

system should be avoided in reality.  

We also plotted 3 regions with stable solutions: the first one with 2 

stationary points is characterized by the situation when after transient proves 

x=0, and y=const. It is pure rural community, when all population is 

concentrated in countryside, AC>BD that means death and restriction of the 

rural population growth (parameter C) play more important role than birth rate 

and population flow. People are more likely to die than to survive, and the rest 

of population settles in rural areas. In the second area stable solution is 

represented with stable rural and urban population, but rural people dominate. 
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This situation can be regarded as traditional society when cities are rare and 

most of population prefer to live in countryside. However with the increase of D 

and/or decrease of C (the flow grows and/or limitations for rural population 

become weaker) the stable solution for urban population begins to overcome the 

rural one. It could occur either because of the cities to become more “popular” 

(parameter D), or when rural area cannot support more number of people 

(decrease of C). Both tendencies make people to go away from the countryside. 

Also near abscissa (low C) there is a narrow area of stable solution when x=0, 

y=const. It happens when because of the decrease of C the number of people 

that can survive in rural area becomes too small to be enough for both phases. 

People thus have to choose where to live, and they prefer to stay where they are 

born rather than to move away. 

 
Fig. 3. Parameter region at A = 0.2. B = 0.5 

 

 Typical time series are presented in fig. 4-9. Urban population is 

represented by red, rural – by green, and total number of people – by black solid 

line. Initial conditions were chosen x=0,1, y=0,9. 

 Usually after short transient process a stable solution is observed. 2 

typical situation are presented in fig. 4 and 5. In the first case there are both 

rural and urban people, in the second case cities disappear.  

 Oscillations though being rather rare can also be observed. They are 

more likely to damp with very long transient process (fig. 7), but also can be 

stable (fig. 6). This dynamics can be attributed to Neolithic societies when 

people use the land as much as they could and having depleted it they started to 

starve and consequently die. However it is not typical for nowadays 

communities, and thus should be avoided. Complex and even chaotic behavior 

can also be found, but we present it here as an example of non-physical 

dynamics, since in usual life this would be the signal of wrong managerial 

solutions. We should note that area of complex dynamics is very small, and that 

can also be treated as model adequacy. 
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Fig. 4. A=0.2; B=0.5; C=0.1; D=0.4 

Transition to stationary mode where  

rural population exceeds the urban 

Fig. 5. A=0.2; B=0.5; C=1.1; D=0.4; 

Transition to stationary mode, when the 

urban population disappears. 

 

  
Fig. 6. A=0.2; B=0.5; C=0.3; D=1.1 

Periodic oscillations  

Fig. 7. A=0.2; B=0.5; C=0.45; D=1.1; 

Damped oscillations. 

 

 
 

Fig. 8. A=0.2; B=0.5; C=0.1; D=1.6; 
Chaotic oscillations 

Fig. 9. A=0.2; B=0.5; C=0.19; D=1.5;  

Multi periodic oscillations (2-period) 

 

5 The problem of controlling the system dynamics 

The most serious problems associated with population growth faced by 

governments is a overpopulation problem and demographic crisis or extinction 
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of the population. In this connection let us consider how to manage the system 

dynamics. Suppose the government implements measures that can be reflected 

as a change in the values of the system parameters A, B, C, D and/or the sudden 

change in the number of x, y (artificially people moved from the countryside to 

the city, or vice versa). Clearly, the parameters A, B, C can not be changed 

dramatically; they are responsible for the traditional approach to family 

formation (B, C) or reflect the outcome of long-term policy in the field of 

medicine (A). Their variations are insignificant and they are extended in time. 

For these reason we will call this group of parameters as adiabatic. 

On the other hand, the parameter D can be changed quite drastically: 

for example, the frequency of "meetings" can be increased or decreased by 

creating artificial barriers to entry the city or leave the village (strict registration 

rules), or one can modify   providing residents of the city more "rustic" 

conditions related to population density (buildings as the private sector). 

Parameter D also could include a variety of unrealistic events (meteor fall, 

epidemics, etc.).  

In the numerical simulation we will implement all the parameter 

changes at time t = T/2. Some results are presented below. 

First, we consider additional flow added to the natural one. We studied both 

constant summand, and summand proportional to rural population. System 

dynamics does not change, and new system can be reduced to the old one by re-

normalization (fig. 10). Then we study the case when there is a 10% shift of the 

population (people are forced to move from countryside to the cities. The 

similar situation occurred in collectivization in Russia or during fencing in 

England). Since mostly solution are stable this momentary shift does not 

influence system dynamics, and after rather short transient process system 

returns to its initial state (fig. 11). In both case the system damps the abrupt 

changes, thus we conclude that such hard measures cannot give expected results. 

Quite fast "curb overpopulation" can be achieved by cross-flow of the 

rural population in the urban population in a city where the birth rate is 

significantly reduced. Suppose, for example, at some point in mortality fell, 

reaching 96% of the original level. In this case, there would be an increase in 

urban population, but at the same time the rural population would slightly 

decrease, too (that happens because of the limiting factor inversely proportional 

to the square of the urban population). Total number of people, however, 

increases. This mode is shown on Fig.12. Similar behavior can be observed and 

if the birth rate in villages increased by 4% (fig. 13). In that case rural 

population grows and thus increases the number of citizens. Qualitatively 

similar behavior can be seen if we increase death rate in cities of decrease birth 

rate in countryside: both population in rural and urban areas decreases, and total 

number of people diminishes. It is interesting to note that the change in life 

conditions in villages influences the system dynamics (and the total number of 

people) more than similar changes in urban life (we plotted the time series for 

the change of 4% in comparison to the initial values – both in 

decrease/increase). 
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Fig. 10. A=0.2; B=0.5; C=0.9; D=0.5;  
Shift is 0.1 in dimensionless variables 

when to the "natural" overflow adds an 

additional inflow of artificially created 

Fig. 11. A=0.2; B=0.5; C=0.9; D=0.5;  
Shift is 0.1 in dimensionless variables.  
Sharp one-time change in the number 

of cities and villages population 

 

 
 

Fig. 12. A=0.2; B=0.5; C=0.9; D=0.5;  
Mortality in city fell, reaching 96% of 

the original (parameter A) 

Fig. 13. A=0.2; B=0.5; C=0.9; D=0.5;  
Birth rate in the countryside is 

growing at 4% (parameter B) 

 

The obtained results may, in particular, explain why the increase in life 

expectancy in urban areas (ie, a mortality decrease) does not lead to such 

dramatic changes as a decline in fertility in the village. We stress that the 

situation in the countryside (source of population) is decisive. At the same time, 

our results show that the policy can be directed only one of the population 

groups to achieve the result and do not necessarily affect both the city and the 

countryside, moreover, it may be advantageous to use that institutional 

arrangements to only one part of the population. 

We also studied the case when the parameters A, B, C remain 

unchanged, but at time t/2 parameter D varies. As it turned out, the system is 

very sensitive to changes in this parameter. Especially one can achieve periodic 
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oscillations from stationary ones, or even chaotic. Some examples are presented 

in fig. 14. 

 
Fig. 14. A=0.2; B=0.5; C=0.43; D=1.1; An example when the parameter D varies 

by only 4%, but damped oscillations become stable. 

 

The changes in institutional parameters can be implemented easier, and can 

be performed in a short period of time. However adiabatic parameters evolve 

over time, allowing the system to adapt to the new situation. They are thus 

highly rigid. Obviously, the best way to influence the dynamics of the system 

lies in the combination of exposure to adiabatic and institutional parameters. 

 

6 Two-component model of population growth of the 

Earth 

On a base of the foregoing observations, it is possible to formulate a 

model of population growth of the Earth in the form of a chain of equations 

describing each country separately. Obviously, just scaling the resulting model 

is not possible, since the processes of flow of the population in different 

countries has quite different nature. In addition we have the processes of 

migration between countries. Apart from introducing such a model term 

describing the flow of rural population in the city, we must also take into 

account immigration, i.e. overflow of the population of one country to another. 

For some countries, this flow is the main source of population growth (e.g. the 

U.S.). This term is logical to take in a similar term describing the flow of rural 

population in the city as in a single country. 

We assume the process of emigration occurs regularly, and go into 

exile in the first place for economic reasons: travel for higher wages, better 

living conditions, the medicine. And emigration has its source mainly in urban 

residents who know foreign languages, and have better opportunity to travel. 
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Besides these processes emigration can occur because of war, natural disasters 

and other force majeure, but they will not be taken into account at this stage. 
Given all this system of equations will have the following form: 
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  (8) 

Here i = 1,2,3, ..... N denotes the total number of countries in the world. Totally 

turns out  2N differential equations. The Earth's population will be calculated as 

a simple sum of all (xi +yi). Analysis of the system (8) can be carried out 

numerically, similar to the analysis of the system (6). Detailed analysis of this 

system will be presented in further publications. 

 The proposed model of the Earth's population growth (8) has obvious 

advantages compared with other models and can be a good basis for the 

calculation of the realistic medium-term and long-term forecast population 

growth of the Earth, which is important to many international organizations 

such as UNESCO or the United Nations. This work however is very time-

consuming because of the need to analyze a large amount of statistical data on 

population growth in the countries and on this basis to determine the model 

parameters, such as the rate of flow of the villagers in the city and residents of 

one country to another.  

We stress that discussed approach to study population dynamics allows 

introducing less numbers of variables to describe population growth. It also can 

explain some peculiarities in population dynamics and can be used for more 

effective managerial solutions in social aspects of human life. 
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