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Abstract. For a time series we consider the quantity L, formally similar to angular
momentum, and strength of a rule, named the extreme L rule, about actual value
of L and two future time series elements. A four-dimensional vector is assigned to a
scalar time series by the numerical titration with low level noise. Mean strength of
the rule and standard deviation, for two levels of added noise, are the components of
this vector. It is shown that the values of Lyapunov exponent are close if vectors of
time series described by Feigenbaum map are close. Three sets of four-dimensional
vectors are formed – Rg, St and Ch, for artificial regular, stochastic and chaotic time
series respectively and their 2-norm distances are estimated. In such a manner we can
distinguish chaos with small noise from pure noise, including colored noise. Chaotic
time series are constructed using iterative maps (Feigenbaum, Henon, sine-square, ...
map) and three-dimensional ODEs (Lorenz, Ueda, Rikitake, ... equations). For an
experimental time series we find its four-dimensional vector and classify it, computing
2-norm distances to sets Rg, St and Ch. The proposed method is tested on a time
series measured in the experiment with RLC circuit. Our result is in agreement with
the results obtained by conventional methods.
Keywords: Time series, Chaos, Noise, Strength of rule, Numerical titration.

1 Introduction

In 2001 Poon and Barahona proposed a numerical titration procedure for de-
tection of chaos [8]. Their method is analogous to neutralization of the acid
with added base, for the purpose of determination of acid concentration. Poon
and Barahona add noise of increasing standard deviation to time series until
its nonlinearity goes undetected. Limiting value of standard deviation gives a
relative measure of chaos intensity.
Hu and Raman are confirmed chaotic nature of AFM tip oscillations by Lya-
punov exponent and noise titration calculations [3]. Chaotic human ventilation
was identified in the same manner [10]. Freitas, Letellier and Aguirre are found
that noise titration fails to distinguish colored noise from low-dimensional chaos
[2]. Roulin, Freitas and Letellier propose usage of this method for detecting a
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nonlinear component in dynamics [9].
The genuine Poon-Barahona method is not applied here, but the level of added
noise is restricted on two low values. Noise affects the strength of a rule, we
formulate using a quantity formally similar to angular momentum. Then we
introduce four-dimensional vectors describing time series. Characterization of
a measured time series is possible by comparison of two vectors – vector of
measured time series and vector of an artificial time series of known character.
Our goal is to avoid difficulties in computing entropies, dimensions and Lya-
punov exponents of a measured time series [5].

2 Extreme L Rule

For a time series A1, A2, ..., A2000 we compute

Zk = (1− b) Ak
Amax

+ bGk (1)

where
Amax = max{|Ak|; k = 1, 2, ..., 2000} (2)

and Gk is Gaussian noise. In numerical titration procedure we will take two
levels of noise: b = 10−6 and b = 10−3.
The quantity formally similar to angular momentum is

Lj = XjVyj − YjVxj , j = 2, 3, ..., 999 (3)

with
Vxi = Xi −Xi−1, Vyi = Yi − Yi−1 (4)

and
Xk = Z2k+1, Yk = Z2k (5)

We now formulate the extreme L rule. For Nα (Nβ) different values of m

Lm > Lα (Lm < Lβ) ⇒
sign(Xm+1 −Xm) = const. and sign(Ym+1 − Ym) = const. (6)

Strength of the rule is
Nα +Nβ − 2 (7)

For example, we take a time series with the following rule

L80 > L400 > L300 > L658 > · · ·
L50 < L600 < L200 < L381 < · · ·

sign(X81 −X80) = sign(X401 −X400) = sign(X51 −X50) =

sign(X601 −X600) = sign(X201 −X200) = sign1

sign(Y81 − Y80) = sign(Y401 − Y400) = sign(Y51 − Y50) =

sign(Y601 − Y600) = sign(Y201 − Y200) = sign2 (8)
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where

sign(X301 −X300) 6= sign1 or sign(Y301 − Y300) 6= sign2

sign(X382 −X381) 6= sign1 or sign(Y382 − Y381) 6= sign2 (9)

Then

Lα = L300, Lβ = L381, Nα = 2, Nβ = 3, Nα +Nβ − 2 = 3 (10)

The strength of extreme L rule in this case is three.

3 Four-Dimensional Vectors Assigned to Time Series

If level of noise in titration procedure is b = 10−6, we find strength of the rule
S1 ± δS1. If level of noise is b = 10−3, the strength of the rule is S2 ± δS2.
Then we construct four-dimensional vector

< S1, δS1, S2, δS2 > (11)

and assign it to considered scalar time series. In graphical representation of
this vector, lengths of red, yellow, green and blue lines are equal to S1, δS1, S2

and δS2 (figure 1, figure 2).
Distance between two sets of four-dimensional vectors, Set1 and Set2, is

d(Set1, Set2) = min{|| < Pi1, δPi1, Pi2, δPi2 >

− < Qj1, δQj1, Qj2, δQj2 > ||; i = 1, 2, 3, ..., j = 1, 2, 3, ...} (12)

where vectors < Pi1, δPi1, Pi2, δPi2 > belong to Set1, vectors
< Qj1, δQj1, Qj2, δQj2 > belong to Set2 and || || denotes 2-norm.

Considering damped oscillations

Ce−βt sinωt, t = 0.01k (13)

we can see that values of β and values of ω are close if corresponding four-
dimensional vectors are close (figure 2). Therefore dynamics described by a
time series and vector assigned to this time series are strongly connected.

For Feigenbaum map
Ai = 1− qA2

i−1 (14)

values of the Lyapunov exponent

λ = lim
n→∞

1

n

n∑
i=1

ln|2qAi−1| (15)

are approximately equal if vector components are approximately equal (figure
3).
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We consider now time series Ak = ξ(0.01k) constructed usin Lorenz equa-
tions

dξ

dt
= 10(η − ξ), dη

dt
= rξ − η − ξζ, dζ

dt
= ξη − 8

3
ζ (16)

with
ξ(0) = 9.4, η(0) = 8.8, ζ(0) = −7.8 (17)

If vectors describing time series are close, then values of r are close (figure 4).

In many cases we have considered, if two vectors < P1, δP1, P2, δP2 > and
< Q1, δQ1, Q2, δQ2 > are close, namely

|| < P1, δP1, P2, δP2 > − < Q1, δQ1, Q2, δQ2 > ||
<< || < P1, δP1, P2, δP2 > ||, || < Q1, δQ1, Q2, δQ2 > || (18)

then characters of corresponding time series are very similar. Reversed state-
ment is not valid. If characters of two time series (type of chaos or type of
regularity for example) are very similar, their vectors can be very different.

Fig. 1. First bundle contains vectors of eight stochastic time series. Lengths of red,
yellow, green and blue lines are equal to S1, δS1, S2 and δS2. Eight vectors in
the second bundle are assigned to eight regular time series (undamped periodic and
quasi-periodic oscillations).
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Fig. 2. Vectors of damped oscillations Ce−βt sinωt (t = 0.01k), where (1) ω = 1
and β = 0.001 − 0.0011 (first bundle), (2) ω = 1 and β = 0.003 − 0.0031 (second
bundle), (3) β = 0.001 and ω = 4.0 − 4.005 (third bundle), (4) ω = 3.005 − 3.0051
and β = 0.002 − 0.0021 (fourth bundle).

Fig. 3. Vectors of Feigenbaum map. Values of λ are: (1) from -0.0203 to -0.0191 (first
bundle), (2) from 0.4064 to 0.4093 (second bundle), (3) from 0.5399 to 0.5407 (third
bundle), (4) from 0.6425 to 0.6457 (fourth bundle).
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Fig. 4. Vectors of time series constructed using Lorenz equations. Four vectors in
first bundle describe regular time series with r = 10.2 − 10.4. The following vectors
describe chaotic time series with r = 29.800002 − 29.800005 (second bundle), r =
30.100002 − 30.100005 (third bundle), r = 30.200002 − 30.200005 (fourth bundle).

4 Sets of Vectors Rg, St and Ch

We now form three sets (Rg, St and Ch) containing four-dimensional vectors
of artificial regular, stochastic and chaotic, with small noise, time series.
Set Rg contains vectors of regular time series (damped and undamped, periodic
and quasi-periodic, oscillations and Feigenbaum map in regular regime). Form
of the time series elements, in the case of undamped oscillations, is

Ak =
∑
i

[
C1 cosωik + C2 cos(Ωik + φi)

]
(19)

Vectors of stochastic time series there are in set St. We have generated
random numbers with uniform and Gaussian distributions (white and colored
noise). Colored noise in St is generated by Bartosch algorithm [1].

Few hundred chaotic time series, described by vectors belonging to set Ch,
are constructed using iterative maps (Feigenbaum, Henon, sine-square, etc)
and three-dimensional ODEs (Lorenz, modified Lorenz, Rössler, Ueda, Riki-
take, etc). The level of aded noise in these time series is from zero to 0.01%.
This noise is included in Aj . The noise included in Zk (eq. 1) is something else.
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We are found out distances between sets Rg, St and Ch:

d(Rg, St) = 0.07, d(Rg,Ch) = 0.15, d(St, Ch) = 0.29 (20)

5 Periodically Driven RLC Circuit

A time series Ki of length 25000 is measured in the experiment with periodi-
cally driven RLC circuit, performed by Kodba, Perc and Marhl [7]. Ki is the
output voltage with a sampling rate of 500 measurements per second. Chaos
is detected using basic methods – determinism test, attractor reconstruction
and calculation of the largest Lyapunov exponent. The mutual information
method and the false neighbor method yield the proper embedding delay and
the proper embedding dimension [6].
We analyze subseries

Ai = Ki+p (i = 1, 2, ..., 2000) (21)

and confirm presence of chaos (table 1).

p vector d(vector,Rg)
||vector||

d(vector,St)
||vector||

d(vector,Ch)
||vector||

0 < 1, 0, 1.55, 0.88 > 0.033 0.198 0.246

32 < 1, 0, 1.46, 0.96 > 0.060 0.235 0.204

65 < 0, 0, 0.54, 0.73 > 0.086 0.259 1.262

82 < 1, 0, 1.54, 1.03 > 0.047 0.261 0.168

83 < 0, 0, 0.37, 0.60 > 0.083 0.158 1.928

582 < 0, 0, 0.11, 0.31 > 1.011 0.068 5.284

624 < 0, 0, 0.12, 0.33 > 0.351 0 4.893

718 < 0, 0, 0.16, 0.37 > 0.631 0.070 4.124

824 < 0, 0, 0.16, 0.39 > 0.571 0.047 3.916

970 < 0, 0, 0.18, 0.39 > 0.527 0 3.805

923 < 2, 0, 2.40, 1.39 > 0.149 0.149 0.044

941 < 2, 0, 2.60, 1.46 > 0.168 0.150 0.034

969 < 2, 0, 2.29, 1.49 > 0.150 0.192 0.004

997 < 2, 0, 2.11, 1.04 > 0.148 0.175 0.048

999 < 2, 0, 2.26, 1.19 > 0.109 0.134 0.017

1001 < 2, 0, 2.21, 1.10 > 0.098 0.135 0.016

Table 1. Considering time series measured by Kodba, Perc and Marhl we find regular
subseries (p = 0, 32, 65, 82, 83), stochastic subseries (p = 582, 624, 718, 824, 970) and
chaotic subseries (p = 923, 941, 969, 997, 999, 1001).

6 Kobe Earthquake

We have computed vectors for subseries of the recorded Kobe earthquake time
series [4]. Most often we find

d(vector,Rg) > 0, d(vector, Ch) > 0, d(vector, St) = 0 (22)
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with
vector =< 1, 0, 1, 0 > or < 2, 0, 2, 0 > or < 3, 0, 3, 0 > (23)

For other vectors, the distances often satisfy

d(vector, Ch) > d(vector,Rg) >> d(vector, St) > 0 (24)

and rarely much greater is replaced by greater

d(vector, Ch) > d(vector,Rg) > d(vector, St) > 0 (25)

We can conclude that analyzed time series is stochastic one.

7 EEG Time Series

We consider here EEG time series Ek (k = 1, 2, ..., 3595) recorded on a patient
undergoing ECT therapy for clinical depression [11]. A vector is assigned to

Aj = Ej+p (j = 1, 2, ..., 2000; p = 1, 2, ..., 1595) (26)

with certain p. Then we compute distance from the vector to sets Rg, St and
Ch. When p is increasing, the vector oscillates between St and Ch, or between
Rg and Ch (table 2).

p vector d(vector,Rg)
||vector||

d(vector,St)
||vector||

d(vector,Ch)
||vector||

1 < 1, 0, 1.27, 1.54 > 0.27 0.38 0.06

2 < 13, 0, 13.15, 0.39 > 0.07 0.02 0.43

3 < 1, 0, 1.53, 2.12 > 0.31 0.37 0.02

4 < 13, 0, 13.07, 0.33 > 0.07 0.02 0.42

5 < 1, 0, 1.17, 1.20 > 0.09 0.38 0.06

6 < 13, 0, 13.13, 0.34 > 0.07 0.02 0.43

7 < 1, 0, 1.55, 2.19 > 0.33 0.37 0.04

8 < 13, 0, 13.13, 0.34 > 0.07 0.02 0.43

751 < 1, 0, 1.40, 1.97 > 0.27 0.38 0.08

752 < 17, 0, 17.03, 0.17 > 0.08 0.12 0.55

753 < 1, 0, 1.77, 2.63 > 0.43 0.39 0.18

754 < 17, 0, 17.01, 0.10 > 0.08 0.12 0.55

755 < 1, 0, 1.60, 2.39 > 0.38 0.38 0.11

756 < 17, 0, 17.01, 0.10 > 0.08 0.12 0.55

757 < 1, 0, 1.39, 1.92 > 0.26 0.39 0.09

758 < 17, 0, 17, 0 > 0.09 0.12 0.55

Table 2. Results we are obtained investigating subseries of EEG time series. For p
from 1 to 8, the vector approaches to Ch, then to St, again to Ch, and so on. For p
from 751 to 758 similar oscillations happen, but St is replaced by Rg.
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8 Conclusion

A new method for time series analyze is proposed here. The extreme L rule
and four-dimensional vectors assigned to time series are in the basis of this
method. In plenty of examples, closeness of vectors leads to similar characters
of time series described by these vectors. We compute distances from vector of
a measured time series to sets Rg, St and Ch, containing vectors of artificial
regular, stochastic and chaotic time series. If minimal distance is significantly
smaller than other distances, we assume that the character of time series is
determined correctly with high probability.
In our further investigations we can add vectors of other artificial time series
to sets Rg, St and Ch. It is also possible to replace Ch with a few sets
corresponding to different types of chaos.
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