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Abstract 
Longitudinal count data often arise in financial and medical studies. In such applications, 

the data exhibit more variability and thus the variance to mean ratio is greater than one. 

Under such circumstances, the negative binomial is more convenient to be used for 

modeling these longitudinal responses. Since these responses are collected over time for 
the same subject, it is more likely that they will be correlated. In literature, various 

correlation models have been proposed and among them the most popular are the 

autoregressive and the moving average structures. Besides, these responses are often 

subject to multiple covariates that may be time-independent or time-dependent. In the 
event of time-independence, it is relatively easy to simulate and model the longitudinal 

negative binomial counts following the MA(1) structures but as for the case of time-

dependence, the simulation of the MA(1) longitudinal count responses is a challenging 

problem. In this paper, we will use the binomial thinning operation to generate sets of 
MA(1) non-stationary longitudinal negative binomial counts and the efficiency of the 

simulation results are assessed via a generalized method of moments approach. 
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1  Introduction 
 

In today’s era, longitudinal data has become extremely useful in applications related to 
the health and financial sectors. It constitutes of a number of subjects that are measured 

over a specified number of time points. Since these measurements are collected for a 

particular subject on a repetitive basis, it is more likely that the data will be correlated. 

The correlation structures may be following autoregressive, moving average, equi-
correlation, unstructured or any other general autocorrelation structures[4][5]. Moreover, 

in longitudinal studies, the responses are influenced by many factors such as in the 

analysis of CD4 counts, the influential factors are the treatment, age, gender and many 

others. In order to estimate the contribution and the significance of each of these factors 
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towards the response variable, it is important to transform the data set-up into a 
regression framework. In literature, the regression parameters have been estimated by 

various approaches. Initially, the method of Generalized Estimating equations (GEE) 

were developed but it fails under misspecified correlation structure particularly under the 
independence correlation structure [5]. Thereafter, Prentice and Zhao [2] developed a 

Joint Estimation approach to estimate jointly the regression and correlation parameters 

and yielded more efficient regression estimates than the GEE approach but the joint 

estimation is based on higher order moments.  Their approach is also based on the 
working correlation structure but the presence of these high order moments dilute the 

misspecification effect and boost the efficiency of the estimates.  On the other hand, Qu 

and Lindsay [3] developed an adaptive quadratic inference based Generalized Method of 

Moments (GMM) approach where they assumed powers of the empirical covariance 
matrices as the bases.  These bases are then used to form  score vectors or moment 

estimating equations and thereafter, they were combined to form a quadratic function  in 

a similar way as the GMM approach. This approach of analyzing longitudinal regression 

models has so far been tested on normal, Poisson data [3] but has not yet been explored 
in negative binomial correlated counts data.  In this paper, our objectives are to develop 

the moment estimating equations based negative binomial model, construct the quadratic 

inference function and then obtain the regression estimates by maximizing the function. 

However, one challenging issue is that since the negative binomial model is a two 
parameter model (that is, depending on the mean and over-dispersion parameter), it 

implies that we will require higher order moments. This estimation approach will be 

tested via simulations on MA(1) stationary and non-stationary negative binomial counts.  

The organization of the paper is as follows: In the next section, we will review the 
negative binomial model along with its MA(1) Gaussian autocorrelation structure and the 

adaptive GMM approach following Qu and Lindsay [3].  In section 3, we will develop 

the estimating equations for the negative binomial model followed by simulation results. 

 

 

 

2  Negative Binomial model 
               Longitudinal data comprise of data that are collected repeatedly over    

               Tt ,3,2,1  time points for subjects Ii ,3,2,1 . Thus any 
thi    

               random observation at 
tht  time point will have a representation of the form  

              ity .  The negative binomial model for ity  is given by 
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given a 1p   vector of covariates 
T

itx  and vector of regression parameters  of the 

form 
T

p ],...,,[ 21   , 
T

iTitiii yyyyy ],....,,...,,[ 21  and 

T

iTitiii ],....,,...,,[ 21   . 

Since these counts ity  are collected repeatedly over time, it is more likely that ity  will 

be correlated over time. In this paper, we will assume that the simulated ity  set of 

response variables come from the family of MA(1) Gaussian autocorrelation structure. 
The derivation of the MA(1) stationary negative binomial counts follows from McKenzie 

binomial thinning process[1]. However, the derivation of the MA(1) non-stationary 

correlation structure has not yet appeared in statistical literature.  In the next section, we 
provide an in-depth derivation of the MA(1) non-stationary Gaussian autocorrelation 

structure. 

 

 

3  MA(1) Non-Stationary Gaussian autocorrelation Structures  

In the non-stationary set-up, the mean parameter at each time point will differ as the 

covariates are time-dependent, that  

                                                iTitii  .......21   

Following McKenzie[1], we set up the framework to generate the MA(1) non-stationary 

Gaussian autocorrelation structure. Tthe binomial thinning process assumes that 
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 where      

                                ),
1

(~ 1iit c
c

NeBind 


, )
1

,(~
cc

Betait





    and,   

                                                   1,* tiit y =





1,

1

)(
tiy

j

ititj zb  , 

                                    prob[ )( itjb  =1]= it , prob[ )( itjb  =0]=1- it  and  

 

                                




cc

cccc
c






2

22

1

)221(
  

That is the conditional distribution of 1,* tiit d  follows the binomial distribution with 

parameters 1itd  and it . Under these assumptions,  it can be proved that 
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iTitiii yyyyy ],...,...,,[ 21  follows the 

MA(1) structure..  Under these distributional assumptions, we note that the covariance 
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between ity  and kity   is given by 
2
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lags, the covariance does not exist. 

 

4. Simulation of MA(1) Non –Stationary NB counts 
The simulation process will follow from the binomial thinning operation explained in the 

previous section with )exp(  T

itit x , that is we need to provide a given set of 

covariate designs and a set of regression vector    that respects the dimension of the 

covariate matrix. Note that for the stationary case, the covariate matrix will be time 

independent while for the non-stationary, the covariate design will be time-dependent. As 

such, we assume for the non-stationary case the following designs,  
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and 2itx is generated from the Poisson distribution with mean parameter 2.  In this way, 

the mean parameter for each subject i will vary.  Thus, for these set of covariates and 

initial estimate of the regression vector, dispersion parameter and correlation parameter, 

we generate MA(1) Negative Binomial random variables by first simulating the error 
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components itd , 1ity  and the thinning operation random variables 1,* tiit y . For 

our simulation process, we will assume the values of 
T]1,1[ . 

5. Estimation Methodology 
Qu and Lindsay [3] have developed an estimation approach based Generalized Methods 

of Moments that do not require any assumption in the underlying correlation structure 

and do not require any estimation of the correlation parameter. In fact, Qu and Linsday 
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where iD  is the gradient matrix: 
T
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  and  is an orthogonal vector. The 

calculation of the parameter  requires the conjugate gradient method [see Qu and 

Lindsay [3]].  In the context of the negative binomial model,  the score vector g is 

defined as: 
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Using the score vector g , Qu and Lindsay [3] defined the objective function 

                                                                    gCgcQ T 1),(   
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where C  is the sample variance of g  
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By maximizing the objective function with respect to the unknown set of parameters, we 

obtain the estimating equation 
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 is the double derivative hessian part of the score 

function and this is being used for calculating the variance of the regression and over-

dispersion parameters. As illustrated by Qu and Lindsay [3], this method yields 
consistent and efficient estimators and tends towards asymptotic normality for large 

sample size.  

 

6. Results and Conclusion 
Following the previous sections, we have run 10,000 simulations for each of the sample 

sizes 500,200,100,50,20I  based on the different covariate designs for the non-

stationary set-ups. Note that for the stationary case, the mean is held constant at all time 

points whilst for non-stationary, the mean varies with the time points given the time-

dependent covariates. The table provides the simulated mean estimates of the regression 

parameters along with the standard errors in brackets. 
 

I Design A Design B Design C 

20 0.9919;1.0010 

(0.1351;0.2120) 

1.0121;0.9987 

(0.1401;0.1971) 

0.9956;1.0013 

(0.2212;0.1898) 

50 1.0110;0.9978 

(0.1022;0.1762) 

0.9919;0.9995 

(0.1211;0.1881) 

0.9982;1.0121 

(0.1580;0.1) 

100 0.9982;0.9995 

(0.0812;0.1120) 

1.0101;0.9961 

(0.0754;0.1052) 

0.9988;1.0015 

(0.0889;0.1010) 

200 1.0012;1.0005 

(0.0661;0.0991) 

0.9992;0.9992 

(0.0762;0.0975) 

1.0042;1.0141 

(0.0562;0.0888) 

500 0.9999;1.0001 

(0.0552;0.0808) 

0.9992;0.9993 

(0.0432;0.0652) 

0.9978;1.0010 

(0.0466;0.0762) 

Based on the simulation results, we note that the estimates of the regression parameters 

are close to the population values and as the sample size increases, the standard errors of 
the regression parameters decrease which indicates that the estimates are consistent and 
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efficient. However, we have remarked a significant number of failures in the simulations 
as we increase the sample size. These failures were mainly due to ill-conditioned nature 

of the double derivative Hessian matrix. To overcome this problem in some simulations, 

we have used the Moore Penrose generalized inverse method in R (ginv in Library 
MASS) to perform the iterative procedures. Overall, the generalized method of moments 

estimation technique is a statistically sound technique but in terms of computation, it may 

not always be reliable. 

   

 References 

 
1. E. McKenzie. Autoregressive moving-average processes with negative binomial and 

geometric marginal distrbutions. Advanced Applied Probability 18, 679–705, 1986. 
2. R. Prentice, R. & L. Zhao (1991). Estimating equations for parameters in  

means and covariances of multivariate discrete and continuous responses. Biometrics 
47, 825–39,1991.  

3. A.Qu & B. Lindsay (2003). Building adaptive estimating equations when inverse of 

covariance estimation is difficult. Journal of Royal Statistical Society 65, 127–

142,2003. 
4. B. Sutradhar. An overview on regression models for discrete longitudinal responses. 

Statistical Science 18(3), 377–393, 2003. 

5. B. Sutradhar, B. & K. Das. On the efficiency of regression estimators in generalized 

linear models for longitudinal data. Biometrika 86, 459–65, 1999. 

 

 


