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Abstract. In this paper, the problems on chaos control and symplectic synchro-
nization of five-dimensional hyperchaotic systems are considered. First, two new five-
dimensional chaotic systems are introduced. Second, the adaptive feedback controller
for symplectic synchronization of the systems is investigated. Sufficient conditions for
the guaranteed symplectic stability of the synchronized errors are provided. In ad-
dition, numerical studies are also performed to verify the effectiveness of presented
schemes.
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1 Instroduction

Synchronization phenomena in coupled chaotic systems has been an impor-
tant topic in nonlinear areas since it was introduced in the first time by Pecora
and Carroll [1]. It is found that chaos has wide applications in the fields of
chemical reactions[2], biological systems[3], and secure communications[4], etc.
As a result, it has been widely explored in various fields of related research.
The idea of synchronization is to use the output of the drive system to control
the response system, so that the output of the response system follows the
output of the drive system asymptotically.

In the past two decades, a variety of types of synchronization in dynamical
systems such as complete synchronization [5], phase synchronization [6], lag
synchronization [7], anti-synchronization [8] and projective synchronization[9]
have been proposed. They represent the difference in the degree of correlation
between interacting systems. Among all kinds of synchronization schemes, gen-
eralized synchronization [10–12] which has been first reported by Rulkov is the
most significant and interesting one. Generalized synchronization is defined
as the presence of some functional relation between the states of the master
system and those of the slave system. The generalized synchronization is no-
ticeable because it is more applicable to secure communication than complete
synchronization by introducing an additional function. More recently, the au-
thors present the idea of symplectic synchronization [13], which can be seen as
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a extension of generalized synchronization. As a result, there also exists great
potential of the application of the symplectic synchronization.

In this paper, the symplectic synchronization between five-dimensional hy-
perchaotic chaotic systems is investigated and an adaptive control law is pro-
posed using Lyapunov stability theory and adaptive control theory. The pro-
posed method is illustrated by applications to two nonidentical five-dimensional
chaotic systems and the simulation results demonstrate the effectiveness of the
proposed control method. The rest of this paper is organized as follows. The
problem formulation and systems description are performed in section 2 and
section 3, respectively. Numerical simulations are performed in section 4 to
verify the effectiveness of the presented schemes, and concluding remarks are
made in the final section.

2 Symplectic synchronization

Consider a drive system

ẋ = f(x) (1)

and the controlled response system

ẏ = g(y) + u(x, y, t) (2)

where x = x1, x2, ..., xn and y = y1, y2, ..., yn are the state vectors, and f, g :
Rn → Rn are two continuous nonlinear vector functions, u(x, y, t) is is the
vector control input.

For symplectic synchronization, the error system is defined as

e(t) = y(t)−H(x, y, t)− F (t) (3)

where F (t) is a given function of time in different form, such as a regular or a
chaotic function.

Our control goal is to design the controller u(t,x,y) for the response system
(2), such that the error system (3) can be asymptotically stable at the zero
equilibrium, i.e. lim

t→∞
e(t) = 0.

Note that when H(x, y, t) + F (t) = x, Eq. (3) reduces to the complete
synchronization given in [5]. In addition, when H(x, y, t) = x, Eq. (3) reduces
to the generalized synchronization given in [11]. Therefore both complete syn-
chronization and generalized synchronization can be seen as a special case of
symplectic synchronization.

3 Systems description

Hu [14] proposed a five-dimensional hyperchaotic Lorenz system by intro-
ducing two state feedback controllers to the classical three-dimensional Lorenz
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system, which is described by

ẋ1 = a(x2 − bx1) + x4

ẋ2 = bx1 − x2 − x1x3 − x5

ẋ3 = −cx2 + x1x2

ẋ4 = dx2 + x1x3

ẋ5 = rx2

(4)

where x1, x2, x3, x4, and x5 are state variables, a, b, c, d and r are all posi-
tive real parameters. When the system parameters are a = 10, b = 28, c =
8/3, d = 2, r = 3, the system (4) is chaotic bursting. The five-dimensional
hyperchaotic system with initial conditions (x1(0), x2(0), x3(0), x4(0), x5(0)) =
(−2, 1, 4, 2,−3) is depicted in Fig.1.
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Fig. 1. Typical dynamical behaviors of five-dimensional hyperchaotic Lorenz system.

More recently, a new five-dimensional hyperchaotic system is given by [15]:

ẏ1 = a1(y2 − by1) + y2y3y4y5

ẏ2 = b1(y2 + by1) + y1y3y4y5

ẏ3 = −y3 + 0.1y21
ẏ4 = −c1y4 + y1y2y3y5

ẏ5 = −d1(y5 − by4)− r1y1 + y1y2y3y4

(5)

where y1, y2, y3, y4, and y5 are state variables, a1, b1, c1, d1, and r1 are all pos-
itive real parameters. When we selected the parameters as a1 = 37, b1 =
14.5, c1 = 10.5, d1 = 15 and r1 = 9.5, the system eyhibits a hyperchaotic
behaviour, as shown in Fig.2.
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Fig. 2. Typical dynamical behaviors of five-dimensional hyperchaotic system (5).

4 Simulation examples

Suppose the master system is defined in (4) which drives the slave system
given in the following form

ẏ1 = a1(y2 − by1) + y2y3y4y5 + u1

ẏ2 = b1(y2 + by1) + y1y3y4y5 + u2

ẏ3 = −y3 + 0.1y21 + u3

ẏ4 = −c1y4 + y1y2y3y5 + u4

ẏ5 = −d1(y5 − by4)− r1y1 + y1y2y3y4 + u5

(6)

where yi(i = 1, 2, 3, 4, 5) are state variables, and ui(i = 1, 2, 3, 4, 5) are external
control inputs.

In this study, we take F1(t) = sin(x5(t)), F2(t) = sin(x1(t)), F3(t) =
sin(x2(t)), F4(t) = sin(x3(t)), F5(t) = sin(x4(t)). They are chaotic functions
of time. H(x, y, t) is choose as Hi(x, y, t) = −x2

i yi, i = 1, 2, 3, 4, 5. Then the
error signals can be defined as

ei = yi + x2
i yi − sin(xj)

i = 1, 2, 3, 4, 5; j =

{
5 i = 1

i− 1 i 6= 1

(7)

From (7), we have

ėi = (1 + x2
i )ẏi + 2xiyiẋi − cos(xj)ẋj

i = 1, 2, 3, 4, 5; j =

{
5 i = 1

i− 1 i 6= 1

(8)
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Then the detail error dynamics is as follows:

ė1(t) = (1 + x2
1)(a1(y2 − by1) + y2y3y4y5 + u1)

+2x1y1(a(x2 − bx1) + x4)− rcos(x5)x2

ė2(t) = (1 + x2
2)(b1(y2 + by1) + y1y3y4y5 + u2)

+2x2y2(bx1 − x2 − x1x3 − x5)− cos(x1)(a(x2 − bx1) + x4)

ė3(t) = (1 + x2
3)(−y3 + 0.1y21 + u3) + 2x3y3(−cx2 + x1x2)

−cos(x2)(bx1 − x2 − x1x3 − x5)

ė4(t) = (1 + x2
4)(−c1y4 + y1y2y3y5 + u4) + 2x4y4(dx2 + x1x3)

−cos(x3)(−cx2 + x1x2)

ė5(t) = (1 + x2
5)(−d1(y5 − by4)− r1y1 + y1y2y3y4 + u5) + 2rx5y5x2

−cos(x4)(dx2 + x1x3)

(9)

Choose a positive definite Lyapunov function as

V (e1, e2, e3, e4, e5) =
1

2
(e21 + e22 + e23 + e24 + e25) (10)

The derivative of V along the trajectories of the system is given by

V̇ = (e1ė1 + e2ė2 + e3ė3 + e4ė4 + e5ė5)

= e1((1 + x2
1)(a1(y2 − by1) + y2y3y4y5 + u1) + 2x1y1(a(x2 − bx1) + x4)

− rcos(x5)x2)

+ e2((1 + x2
2)(b1(y2 + by1) + y1y3y4y5 + u2)

+ 2x2y2(bx1 − x2 − x1x3 − x5)− cos(x1)(a(x2 − bx1) + x4)

+ e3((1 + x2
3)(−y3 + 0.1y21 + u3) + 2x3y3(−cx2 + x1x2)

− cos(x2)(bx1 − x2 − x1x3 − x5))

+ e4((1 + x2
4)(−c1y4 + y1y2y3y5 + u4) + 2x4y4(dx2 + x1x3)

− cos(x3)(−cx2 + x1x2))

+ e5((1 + x2
5)(−d1(y5 − by4)− r1y1 + y1y2y3y4 + u5) + 2rx5y5x2

− cos(x4)(dx2 + x1x3))

(11)

To guarantee the error dynamical system converge to the origin asymptot-
ically, we propose the following adaptive control law

u1 = −2x1y1(a(x2−bx1)+x4)+rcos(x5)x2−e1
(1+x2

1)
− (a1(y2 − by1) + y2y3y4y5)

u2 = −2x2y2(bx1−x2−x1x3−x5)+cos(x1)(a(x2−bx1)+x4)−e2
(1+x2

2)

−(b1(y2 + by1) + y1y3y4y5)

u3 = −2x3y3(−cx2+x1x2)+cos(x2)(bx1−x2−x1x3−x5)−e3
(1+x2

3)
− (−y3 + 0.1y21)

u4 = −2x4y4(dx2+x1x3)+cos(x3)(−cx2+x1x2)−e4
(1+x2

4)
− (−c1y4 + y1y2y3y5)

u5 = −2rx5y5x2+cos(x4)(dx2+x1x3)−e5
(1+x2

5)
− (−d1(y5 − by4)− r1y1 + y1y2y3y4)

(12)
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Thus

V̇ = −(e21 + e22 + e23 + e24 + e25) ≤ 0 (13)

Since V̇ ≤ 0, we have lim
t→∞

ei(t) = 0, i = 1, 2, 3, 4, 5.

In the following, some numerical simulations about the symplectic synchro-
nization between the drive system (4) and the response system (6) are given
to verify the effectiveness of the proposed method. In the numerical simula-
tions, the fourth-order Runge-Kutta method is used to solve the system. The
system parameters are selected as a = 10, b = 28, c = 8/3, d = 2, r = 3 and
a1 = 37, b1 = 14.5, c1 = 10.5, d1 = 15, r1 = 9.5, such that the drive system
and the response system are hyperchaotic with no control applied. The initial
conditions are selected to be x(0) = (−2,−3, 4, 2, 3) for the drive system and
y(0) = (2, 5, 4,−4, 8) for the response system, respectively.
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Fig. 3. Time response of the symplectic synchronization errors.

Fig.3 shows the time evolution of the symplectic synchronization errors,
which displays that the errors tend to zero as t→∞. These results show that
symplectic synchronization between two different five-dimensional hyperchaotic
system has been achieved with our designed adaptive controllers (12).

5 Conclusions

In this paper, we have studied the robust adaptive symplectic synchro-
nization between two different five-dimensional hyperchaotic systems based on
adaptive control and stability theory. The effectiveness of the proposed ap-
proach have been verified by the numerical simulations. The presented control
method can be applied in many other hyperchaotic systems and are valuable
to be applied to the realization in engineering.
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