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Abstract. Starting from the Beta(2,2) model, connected to the Verhulst logistic
parabola, several extensions are discussed, and connections to extremal models are
revealed. Aside from the classical General Extreme Value Model from the indepen-
dent, identically distributed case, extreme value models in randomly stopped extremes
schemes are discussed. In this context, the classical logistic Verhulst model is a max-
geo-stable model, i.e. the geometric thinning of the observations curbs down growth
to sustainable patterns. The general differential models presented are a unified ap-
proach to population dynamics growth, with factors of the form [− ln(1 −N(t))]P−1

and the linearization [N(t)]p−1 modeling two very different growth patterns, and fac-
tors of the form [− lnN(t)]Q−1 and the linearization [1 − N(t)]q−1 leading to very
different ambiental resources control of the growth behavior.
Keywords: Verhulst logistic model, Beta and BeTaBoOp models, population dy-
namics, extreme value models, geometric thinning, randomly stopped maxima with
geometric subordinator.

1 Introduction

Let N(t) denote the size of some population at time t. Verhulst ([22], [23], [24])
imposed some natural regularity conditions on N(t), namely that

d

dt
N(t) =

∞∑
k=0

Ak[N(t)]k,

with A0 = 0 since nothing can stem out from an extinct population, A1 > 0
a ‘growing’ parameter, A2 < 0 a retroaction parameter controlling sustainable
growth tied to available resources. See also Lotka, [14].
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The second order approximation d
dtN(t) = A1N(t) + A2[N(t)]2 can be

rewritten as
d

dt
N(t) = r N(t)

[
1− N(t)

K

]
, (1)

where r > 0 is frequently interpreted as a Malthusian instantaneous growth
rate parameter, whenever modeling natural breeding populations, and K > 0
as the equilibrium limit size of the population.

The general form of the solution of the differential equation approximation,
in (1), is the family of logistic functions

N(t) =
KN0

N0 + (K −N0) e−rt
,

where N0 is the population size at time t = 0. This is the reason why in
the context of population dynamics r x (1− x) is frequently referred to as ‘the
logistic parabola’.

Due to the seasonal reproduction and time life of many natural populations,
the differential equation in (1) is often discretised, first taking r∗ such that

N(t+ 1)−N(t) = r∗N(t) [1−N(t)/K] and then α = r∗+ 1, x(t) = r∗N(t)
r∗+1 , to

obtain x(t+ 1) = αx(t)[1− x(t)], and then the associated difference equation

xn+1 = αxn (1− xn), (2)

where it is convenient to deal with the assumption xn ∈ [0, 1], n = 1, 2, . . .
The equilibrium xn+1 = xn leads to a simple second order algebraic equa-

tion with positive root 1 − 1/α, and to a certain extent it is surprising that
anyone would care to investigate its numerical solution using the fixed point
method, which indeed brings in many pathologies when a steep curve — i.e.,
for some values of the iterates |α (1 − 2xn)| > 1 — is approximated by an
horizontal straight line. This numerical investigation, apparently devoid of
interest, has however been at the root of many theoretical advances (namely
Feigenbaum bifurcations and ultimate chaotic behavior), and a posteriori led to
many interesting breakthroughs in the understanding of population dynamics.

Observe also that (2) can be rewritten as xn+1 = α
6 6xn [1− xn], and that

f(x) = 6x (1− x) I(0,1)(x) is the Beta(2, 2) probability density function (pdf).
Extensions of the Verhulst model using difference equations similar to (2), but
where the right hand side is tied to a more general Beta(p, q) pdf,

fp,q(x) =
xp−1(1− x)q−1

B(p, q)
I(0,1)(x), (3)

where as usual

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx =
Γ (p)Γ (q)

Γ (p+ q)

is Euler’s beta function, have been investigated in Aleixo et al., [1], and in
Rocha et al., [19].
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Herein we consider further extensions of population dynamics first discussed
in Pestana et al. [15], Brilhante et al. [5] and Brilhante et al. [3], whose inspi-
ration has been to remark that 1 − x is the linear truncation of the series
expansion of − ln x, as well as x is the linear truncation of the series expansion
of − ln(1− x).

In Section 2, we describe the BeTaBoOp(p, q, P,Q), p, q, P,Q > 0 family
of pdfs, with special focus on subfamilies for which one at least of those shape
parameters is 1. In Section 3, we discuss generalised Verhulst differential equa-
tions and connect them to extreme value theory (EVT). In Section 4, some
further points tying population dynamics and statistical extreme value mod-
els are discussed, namely the connection of the instantaneous growing factors
xp−1 and [− ln(1−x)]P−1 to models for minima, and of the retroaction control
factors (1− x)q−1 and [− ln x]Q−1 to modeling population growth using max-
ima extreme value models — either in the classical extreme value setting or
in the geo-stable setting, where the geometric thinning curbs down growth to
sustainable patterns. Section 5 discusses what should be expected from some
specially remarkable differential description of growth in terms of products of
independent uniform random variables, and products of maxima and minima
of two independent uniforms.

2 The Xp,q,P,Q _ BeTaBoOp(p, q, P,Q) models,
p, q, P,Q > 0

Let {U1, U2, . . . , UQ} be independent and identically distributed (iid) standard
uniform random variables,

V =

Q∏
k=1

U
1
p

k , p > 0,

the product of iid Beta(p, 1) random variables. As − ln V _ Gamma(Q, 1p ),
the pdf of V is

fV (x) =
pQ

Γ (Q)
xp−1(− ln x)Q−1I(0,1)(x).

While for the interpretation of V as a product of powers of independent
uniform random variables the parameter Q must be an integer, the above ex-
pression makes sense for all Q > 0. This led Brilhante et al. [5] to introduce
the so-called Betinha(p,Q) family of random variables {Xp,Q}, p,Q > 0, with
pdf

fXp,Q(x) =
pQ

Γ (Q)
xp−1(− ln x)Q−1 I(0,1)(x), p,Q > 0, (4)

to derive population growth models that do not comply with the sustainable
equilibrium exhibited by the Verhulst logistic growth model. Observe that the
Beta(p, q), p, q > 0 family, in (3), can be viewed as a truncation approximation
of this more flexible Betinha(p,Q), in (4), since 1− x is the linear term of the
MacLaurin expansion − ln x =

∑∞
k=1 (1− x)k/k.
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On the other hand, if Xq,P _ Betinha(q, P ), the pdf of 1−Xq,P is

f1−Xq,P (x) =
qP

Γ (P )
(1− x)q−1(− ln(1− x))P−1 I(0,1)(x), q, P > 0,

and the family of such random variables also extends the Beta(p, q) family in
the sense that x is the linearization of − ln(1− x).

Having in mind Hölder’s inequality, it follows that

xp−1(1− x)q−1[− ln(1− x)]P−1(− ln x)Q−1 ∈ L1
(0,1), p, q, P,Q > 0,

and hence

fp,q,P,Q(x) =
xp−1(1− x)q−1[− ln(1− x)]P−1(− ln x)Q−1I(0,1)(x)∫ 1

0

xp−1(1− x)q−1[− ln(1− x)]P−1(− ln x)Q−1dx

(5)

is a pdf of a random variable Xp,q,P,Q for all p, q, P,Q > 0.
Obviously, 1−Xp,q,P,Q = Xq,p,Q,P .

Brilhante et al. [3] used the notation Xp,q,P,Q _ BeTaBoOp(p, q, P,Q)
for the random variable with pdf (5) — obviously the Beta(p, q), p, q > 0
family of random variables, in (3), is the subfamily BeTaBoOp(p, q, 1, 1), and
the formerly introduced Betinha(p,Q), p,Q > 0, in (4), is in this more general
setting the BeTaBoOp(p, 1, 1, Q) family. The cases for which some of the shape
parameters are 1 and the other parameters are 2 are particularly relevant in
population dynamics. In the present paper, we shall discuss in more depth
Xp,1,1,Q and X1,q,P,1, and in particular X2,1,1,2 and X1,2,2,1.

Some of the 15 subfamilies when one or more of the 4 shape parameters
p, q, P,Q are 1 have important applications in modeling. Below we enumerate
the most relevant cases, giving interpretations in terms of products of powers
of independent Uk _ Uniform(0, 1) random variables, for integer parameters
and whenever feasible.

1. X1,1,1,1 = U _ Uniform(0, 1),

f1,1,1,1(x) = I(0,1)(x).

2. Xp,1,1,1 = U
1
p _ Beta(p, 1),

fp,1,1,1(x) = p xp−1I(0,1)(x).

3. X1,q,1,1 = 1− U
1
q _ Beta(1, q),

f1,q,1,1(x) = q (1− x)q−1I(0,1)(x).

4. X1,1,P,1, that for P ∈ N is 1 minus the product of P iid standard uniform
random variables,

X1,1,P,1 = 1−
P∏
k=1

Uk, Uk _ Uniform(0, 1), independent.
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More generally, for all P > 0,

f1,1,P,1(x) =
(− ln(1− x))P−1

Γ (P )
I(0,1)(x),

where Γ (P ) =
∫∞
0
xP−1e−xdx is Euler’s gamma function.

5. X1,1,1,Q, that for Q ∈ N is the product of P iid standard uniform random
variables,

X1,1,1,Q =

Q∏
k=1

Uk, Uk _ Uniform(0, 1), independent.

Alternatively, X1,1,1,Q can be described in the following hierarchical con-

struction: Let Y1
d
=X1,1,1,1 _ Uniform(0, 1), Y2 _ Uniform(0, Y1), Y3 _

Uniform(0, Y2), . . . , YQ _ Uniform(0, YQ−1). Then YQ
d
=X1,1,1,Q _

BeTaBoOp(1, 1, 1, Q).
More generally, for all Q > 0,

f1,1,1,Q(x) =
(− lnx)Q−1

Γ (Q)
I(0,1)(x).

6. Xp,q,1,1 _ Beta(p, q), with pdf fp,q,1,1(x) ≡ fp,q(x), already given in (3).
Observe that if p, q ∈ N, we have an interesting interpretation in terms
of order statistics of an uniform random sample: Xp,q,1,1 is then the p-th
ascending order statistic from an uniform random sample of size p+ q− 1,
usually denoted Uq:p+q−1.
As already observed, the pdf f2,2,1,1(x) = 6x (1 − x) I(0,1)(x) of X2,2,1,1 is
proportional to the logistic parabola, a landmark in the development of ap-
plications of dynamic systems and chaos to analyze biological phenomena,
and namely in population dynamics. Observe also that X2,2,1,1 is U2:3, the
median of an uniform random sample of size 3.

7. Xp,1,P,1, with pdf

fp,1,P,1(x) = C
p,1,P,1

xp−1 [− ln(1− x)]P−1 I(0,1)(x),

where C
p,1,P,1

= 1/
∫ 1

0
xp−1 [− ln(1− x)]P−1dx.

Observe that for p ∈ N, C
p,1,P,1

= 1/
∑p
k=1(−1)k+1

(
p−1
k−1
) Γ (P )

kP
.

8. Xp,1,1,Q, with

fp,1,1,Q(x) =
pQ

Γ (Q)
xp−1(− ln x)Q−1 I(0,1)(x),

that for Q ∈ N is the product of Q iid Beta(p, 1), i.e. standard uniform
random variables raised to the power 1/p, cf. also Arnold et al. [2].
As 1 − x can be viewed as the linear truncation of − ln x, the traditional
Beta(p, q) family, with pdf given in (3), can be viewed as an approximation,
in what concerns the retroactive curbing down factor, of thisXp,1,1,Q family.
Such a family is thus suited to model more complex growth control patterns.
Observe that (− ln x)ν−1 > (1 − x)ν−1 for each ν > 1, while the reverse
inequality holds for ν ∈ (0, 1).
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9. X1,q,P,1, with pdf

f1,q,P,1(x) =
qP

Γ (P )
(1− x)q−1 [− ln(1− x)]P−1 I(0,1)(x).

Similarly to what happens in the previous case, for some fixed value ν > 1,
the growing factors xν−1 < [− ln(1 − x)]ν−1, while for ν ∈ (0, 1) xν−1 >
[− ln(1 − x)]ν−1. As already underlined, x can be viewed as the linear
truncation of − ln(1− x), and henceforth the traditional Beta(p, q) family
can be viewed as an approximation, in what concerns the growing factor,
of this X1,q,P,1 family, that exhibits more complex growth patterns.

10. X1,q,1,Q, with pdf

f1,q,1,Q(x) = C
1,q,1,Q

(1− x)q−1 [− ln x]Q−1 I(0,1)(x),

where C
1,q,1,Q

= 1/
∫ 1

0
(1− x)q−1 [− ln x]Q−1dx. More generally, the nota-

tion C
p,q,P,Q

= 1/
∫ 1

0
xp−1(1− x)q−1[− ln(1− x)]P−1 [− ln x]Q−1dx is used

in the sequel.
11. X1,1,P,Q, with pdf

f1,q,1,Q(x) = C
1,1,P,Q

[− ln(1− x)]P−1 [− ln x]Q−1 I(0,1)(x).

12. Xp,q,P,1, with pdf

fp,q,P,1(x) = C
p,q,P,1

xp−1(1− x)q−1 [− ln (1− x)]P−1 I(0,1)(x).

13. Xp,q,1,Q, with pdf

fp,q,1,Q(x) = C
p,q,1,Q

xp−1(1− x)q−1 [− ln x]Q−1 I(0,1)(x).

14. Xp,1,P,Q, with pdf

fp,1,P,Q(x) = C
p,1,P,Q

xp−1 [− ln (1− x)]P−1 [− ln x]Q−1 I(0,1)(x).

15. X1,q,P,Q, with pdf

f1,q,P,Q(x) = C
1,q,P,Q

(1− x)q−1 [− ln (1− x)]P−1 [− ln x]Q−1 I(0,1)(x).

Observe that the denominator of the norming constants

C
p,q,P,Q

= 1/

∫ 1

0

xp−1(1− x)q−1[− ln(1− x)]P−1 [− ln x]Q−1dx

can be viewed as moments of functions of BeTaBoOp random variables with
additional shape parameters with value 1. For instance,

C
p,q,1,Q

= EXp,q,1,1 [(− ln X)Q−1] = EX1,q,1,1 [Xp−1(− ln X)Q−1].

In what concerns the applicability of some of the above models (and namely
11–15), we have to recognize that computations are unfeasible, even if we decide
to use only lower moments and approximations instead of more powerful meth-
ods using the exact model. However, computational algorithms can, at least
partially, resolve this question when dealing with precise practical applications.
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3 Generalised Verhulst differential equations

Looking to the Verhulst equation, in (1), and observing that in it N(t) ∝
f2,2,1,1, with fp,q,1,1 ≡ fp,q, given in (3), it seems worth considering similar
differential equations with N(t) ∝ fp,q,P,Q, in (5),

d

dt
N(t) = r [N(t)]p−1[1−N(t)]q−1[− ln(1−N(t))]P−1[− ln(N(t))]Q−1, (6)

p, q, P,Q > 0 , namely when one at least of the parameters is 1. The situation
p+ q + P +Q = 6, with p, q, P,Q ∈

{
1
2 , 1,

3
2 , 2
}

seems also worth exploring.

The solution is straightforward for very simple cases, such as

• p = q = P = Q = 1 — linear growth;

• p = 2, q = P = Q = 1 — exponential growth;

• q = 2, p = P = Q = 1 — exponential decay;

• p = q = 2, P = Q = 1 — logistic growth.

For some combinations of the parameters, Mathematica’s procedure DSolve
produces explicit (but in general very cumbersome) solutions, for instance:

• q = P = Q = 1 =⇒ N(t) = [−(p− 2) (c+ rt)]
1

2−p ;

• p = Q = 2, q = P = 1 =⇒ N(t) = exp(e−rt+c) — Gompertzian (or
Gumbel) growth;

• p = 2, q = P = 1, Q = 1 + γ =⇒ N(t) = exp
(

[−γ(rt− c)]−
1
γ

)
—

Fréchet growth if γ > 0, Weibull growth if γ ∈ (−1, 0) (when γ → 0, the
limiting growth is of Gumbel type).

Looking back at the biological interpretations of (1), it seems reasonable to
consider that in (6)

• [N(t)]p−1 and [− ln(1−N(t))]P−1 are growing factors;

• [1 − N(t)]q−1 and [− ln(N(t))]Q−1 are retroaction factors whose role in
the model is to take into account bounds imposed by finite environmental
resources.

Therefore, some sort of equilibrium is to be expected when p+ P = q +Q
(although slight deviance from such equilibrium may match some forms of
extreme growth or of extinction, as discussed later on). Looking at some plots
gives some visual insight on the balance of the expanding and contracting
factors:
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More rigorous algebraic comparisons can be made. For instance, as shown
in [15],

f2112(x) =

∞∑
k=1

4

k(k + 1)(k + 2)
f2,k+1,1,1(x),

and as on the other hand

f2,k+1,1,1(x) =

k∑
j=0

(−1)j
(
k
j

)
(j + 2)B(2, k + 1)

fj+2,1,1,1,

it follows that X2,1,1,2 is a pseudo-convex mixture (a term we use to charac-
terise mixtures where negative weights are allowed, provided that the sum of
all weights is 1) of power laws, each positive even component forcing popula-
tion growth, followed by a negative odd component counteracting this growth
impetus.

The cases p + P � q + Q and p + P � q + Q obviously lead to explosive
growth N(t)→∞ or to ultimate population extinction N(t)→ 0, respectively.
Once again, visual insight can be gained from some simple plots:
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In what follows we shall consider only those cases for which we have some
explicit solutions connected to EVT, namely

1.
d

dt
N(t) = r [N(t)][1−N(t)],

whose normalised solution is the Logistic distribution function, and its
extension

d

dt
N(t) = r ([N(t)])1+γ [1−N(t)]1−γ ,

whose normalised solutions are the log-logistic or the symmetrised log-
logistic distribution functions.

2.
d

dt
N(t) = r [N(t)][− ln(N(t))],

whose normalised solution is the Gumbel distribution function (for max-
ima), and its extension

d

dt
N(t) = r [N(t)][− ln(N(t))]1+γ ,

whose normalised solutions are the Fréchet distribution function (for max-
ima) when γ > 0, and the max-Weibull distribution function when γ < 0.
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3.
d

dt
N(t) = r [1−N(t)][− ln(1−N(t))],

whose normalised solution is the min-Gumbel distribution function, and its
extension

d

dt
N(t) = r [1−N(t)][− ln(1−N(t))]1+γ ,

whose normalised solutions are the min-Fréchet distribution function when
γ > 0, and the Weibull distribution function (for minima) when γ < 0.

4 Geo-stable laws for the maxima of iid random
variables

Rachev and Resnick [16] developed a theory of stable limits of randomly stopped
maxima with geometric subordinator (also called max-geo stability) similar to
what had been independently achieved by Rényi [17], Kovalenko [12] and in all
generality by Kozubowski [13]. For a panorama cf. also Gnedenko and Korolev
[10].

A random variable is max-geo-stable if and only if geometric randomly
stopped maxima of independent replicas is of the same Khinchine type. More
precisely, if X1, X2, . . . , Xn, . . . are independent replicas of X, with distribution
function F , and Y _ Geometric(θ) independent of the Xk’s, the distribution
function of max{X1, . . . , XY } is

∞∑
k=0

F k(x)θ(1− θ)k−1 =
θF (x)

1− (1− θ)F (x)
. (7)

We then say that X is a max-geo-stable random variable (or that F is a max-
geo-stable distribution function) if for all θ ∈ (0, 1) there exist aθ > 0 and
bθ ∈ R such that

F (aθx+ bθ) =
θ F (x)

1− (1− θ)F (x)
. (8)

Let us define G(x) = e1−
1

F (x) , x > αF , where αF denotes the left-endpoint
of F , i. e. αF = inf{x : F (x) > 0. Then (8) is equivalent to

G(aθx+ bθ) = G
1
θ (x), (9)

i.e. G is a max-stable distribution. If there is no need of the shift parameter
bθ, we say that X (or F ) is strictly max-geo-stable, and we get the max-

stability equation G(aθx) = G
1
θ (x), first investigated by Lévy in the context of

stability of sums in the iid context (and so for characteristic functions, instead
of distribution functions), and adapted by Fréchet, [8], to establish the max-

stability of the type G(x) = exp
(
− x−

1
γ
)
I[0,∞)(x), γ > 0.

In fact, Fisher and Tippet, [7], have shown that distribution functions G of
the type

G(x) ≡ Gγ(x) = exp
[
−(1 + γx)−

1
γ

]
I{x: 1+γx>0}(x), γ ∈ R, (10)
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with the Gumbel limiting form G0(x) = exp−e
−x
, x ∈ R, when γ → 0, sat-

isfy the functional equation (9), and Gnedenko, [9], has shown that this gen-
eral extreme value (GEV) distribution (sometimes presented in three separate
branches, for γ > 0 (Fréchet), γ = 0 (Gumbel) and γ < 0 (max-Weibull), while
the general expression (10) is known as von Mises-Jenkinson GEV family of
distributions). This, together with the characterisation of the domains of at-
traction of the Fréchet and Weibull types by Gnedenko, [9], and of the Gumbel
type by de Haan, [11], form the core of classical EVT.

Hence, the max-geo-stable distribution functions, F (x) = 1
1−ln Gγ(x) , x > αF ,

are given by

F (x) ≡ Fγ(x) =
1

1− ln Gγ(x)
=

1

1 + (1 + γx)−1/γ
, 1 + γx > 0, (11)

The max-geo-stable distribution functions, in (11), can thus be written as one
of the following types:

1.

F (x) =
1

1 + x−1/γ
I[0,∞), γ > 0,

a log-logistic distribution (i.e., the distribution of a random variable whose
natural logarithm follows the logistic distribution) tied to the classical max-
stable Fréchet-γ distribution,

2.

F (x) =
1

1 + e−x
IR ,

the logistic distribution tied to the classical max-stable Gumbel extreme
value distribution,

3.

F (x) =
1

1 + (−x)
−1/γ I(−∞,0), γ < 0,

symmetric to the log-logistic, and tied to the classical max-stable Weibull-γ
extreme value distribution,

as first established by Rachev and Resnick [16].
From tail equivalence results obtained by Resnick, [18], and by Cline, [6],

it follows that the characterisation of the domains of attraction of max-geo-
stable laws are similar to the characterisation of the domains of attraction of
the classical maxima extreme value laws.

It is obvious that for the same parent population, the maximum of a geomet-
rically thinned sequence is necessarily stochastically smaller than the maximum
of the full sequence, and hence max-geo-stable laws are stochastically smaller
than the corresponding classical extreme value laws, as can be seen in Fig. 1.

From the fact that min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}, similar re-
sults follow in what concerns min-geo-stability. In what regards stochastic
ordering, min-geo-stable laws are stochastically greater than the corresponding
classical minimum extreme value laws.
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Fig. 1. Pdf’s gγ(x) = dGγ(x)/dx, for γ = −0.5, γ = 0 and γ = 1, together with the
normal pdf, ϕ(x), and the max-geo-stable pdf’s f0(x) and f1(x).

5 Population Dynamics, BeTaBoOp(p, q, P,Q) and
extreme value models

Brilhante et al., [3], used differential equations

d

dt
N(t) = r N(t) [− ln[N(t)]]

1+γ
, (12)

obtaining as solutions the three extreme value models for maxima, max-Weibull
when γ < 0, Gumbel when γ = 0 and Fréchet when γ > 0. The result for γ = 0
has also been presented in Tsoularis [20] and in Waliszewski and Konarski [25],
where as usual in population growth context the Gumbel distribution is called
Gompertz function. Brilhante et al., [3], have also shown that the associated
difference equations

xn+1 = αxn [− ln xn]1+γ

exhibit bifurcation and ultimate chaos, when numerical root finding using the
fixed point method, when α = α(γ) increases beyond values maintaining the
absolute value of the derivative limited by 1.

On the other hand, if instead of the right hand side N(t) [− ln[N(t)]]
1+γ

associated to the BeTaBoOp(2, 1, 1, 2 + γ) we use as right hand side

[− ln[1−N(t)]]
1+γ

[1−N(t)], associated to the BeTaBoOp(1, 2 + γ, 2, 1),

d

dt
N(t) = r [− ln[1−N(t)]]

1+γ
[1−N(t)]

the solutions obtained are the corresponding extreme value models for min-
ima (and bifurcation and chaos appear when solving the associated difference
equations using the fixed point method). In view of the duality of extreme
order statistics for maxima and for minima, in the sequel we shall restrict our
observation to the case (12) and the associated BeTaBoOp(2, 1, 1, 2+γ) model.
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As

− lnN(t) =

∞∑
k=1

[1−N(t)]k

k
> 1−N(t),

for the same value of the malthusian instantaneous growth parameter r we
have r N(t) [1−N(t)] < rN(t) (− ln[N(t))], and hence while Verhulst differen-
tial equation (1) models sustainable growth in view of the available resources,
extreme value differential equations (12) model extreme, arguably destructive
unsustained growth — for instance cell growth in tumours.

The connection to EVT suggests further observations:

Assume that U1, U2, U3, U4 are iid standard uniform random variables.

1. The pdf of min(U1, U2) is fmin(U1,U2)(x) = 2 (1 − x) I(0,1)(x) and the pdf
of max(U1, U2) is fmax(U1,U2)(x) = 2x I(0,1)(x). Hence the Beta(2, 2) ≡
BeTaBoOp(2, 2, 1, 1) tied to the Verhulst model (1) is proportional to the
product of the pdf of the maximum and the pdf of the minimum of inde-
pendent standard uniforms.

2. The pdf of the product U3U4 is fU3U4
(x) = − ln x I(0,1)(x) — and more

generally, the pdf of n independent standard uniform random variables is a
BeTaBoOp(1, 1, 1, n) — and hence the pdf of the BeTaBoOp(2, 1, 1, n) tied
to (12) is proportional to the product of fmax(U1,U2) by fU3U4

. Interpreting
fmax(U1,U2) fU3U4 and fmax(U1,U2) fmin(U1,U2) as ‘likelihoods’, this shows that
the model (12) favors more extreme population growth than the model (1).

More explicitly, the pdfs f1,1,1,2fU3U4
(x) = − ln x I(0,1)(x) and

f1,2,1,1fmin(U1,U2)(x) = 2 (1−x) I(0,1)(x) intersect each other at x ≈ 0.203188,
and scrutiny of the graph shows that the probability that U3 U4 takes on
very small values below that value is much higher than the probability of
min(U1, U2) < 0.203188, and therefore the controlling retroaction tends to
be smaller, allowing for unsustainable growth.

For more on product of functions of powers of products of independent
standard uniform random variables, cf. Brilhante et al., [4], and Arnold et
al., [2].

3. The max-geo-stable laws are the logistic, the log-logistic and the sym-
metrised log-logistic (corresponding to the Gumbel, Fréchet and max-Weibull
when there is no geometric thinning, and with a similar characterisation
of domains of attraction). Hence, the classical Verhulst population growth
model, in (1), can also be looked at as an extreme value model, but in a
context where there exists a natural thinning that maintains sustainable
growth.

As shown in [3], non-stable extreme values (arising when the hypothesis of
identically distributed random variables is dropped out) may arise when
the retroaction factor is delayed.

More involved population dynamics growth differential equation models do
have explicit solution for special combinations of the shape parameters. For
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instance, the solution of

d

dt
N(t) = r [N(t)]2−γ

[
1− N(t)

K

]γ
, γ < 2, (13)

is

N(t) =
K

1 +

{
(γ − 1) rK1−γt+

(
K
N0
− 1
)1−γ} 1

1+γ

as shown by Turner et al., [21], cf. also Tsoularis, [20].

As in the case of the Verhulst parabola, the difference equations corre-
sponding to the differential equations with BeTaBoOp kernel describing other
population growth equilibria do exhibit bifurcation and ultimate chaos when
the corresponding unimodal curve slope brings in instability to the fixed point
algorithm, indicating that the reproduction rate and ensuing growth rate is too
high (and therefore resources and sustainability are endangered, and growth
rate of competing species rises concomitantly). In the figure below we show
the bifurcation graphs for some combinations of the parameters:

Betaboop(1, 1, 2, 2) Betaboop(1, 1, 2, 3)

BetaBoop(1, 2, 3, 2) BetaBoop(1, 3, 2, 2)
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Betaboop(2, 1, 2, 2) Betaboop(2, 1, 2, 3)

Betaboop(2, 2, 1, 2) Betaboop(2, 2, 1, 3)

Betaboop(2, 3, 2, 1) Betaboop(3, 2, 2, 1)
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