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Abstract. Introducing the Lamé operator in the telegraph equation, we obtain 

theoretically a similar nonlinear system. In this work we are interested in the existence 

and uniqueness of function u=u(x,t), x ∈Ω , t ∈(0,T) solution for the new system by the 

elliptic regularization method. 
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1    Notations and position of the problem 

Let Ω an open bounded domain of IRⁿ, with regular boundary Γ. We denote by 

Q the cylinder    
  IRt: Q = Ω × ]0,T[, with boundary Σ. L designed Lamé 

system define by μΔ + (λ+μ)∇div, λ and μ are constants Lamé with λ+ μ ≥0 and 

h,f are functions. We look for the existence and uniqueness of a function            

u = u(x,t),  x ∈ Ω, t ∈]0,T[, solution of the problem (P) 

 

(P) 

{
 

 
            |  |                            

                                                                                                   

                                                              

                                                               

       (1.1) 

 

2    Existence of the solution 

Theorem1.   Assume that Ω is bounded open of IRⁿ are given f, with f   L(Q).  

Then there exists a function u = w₀+w satisfying (P) 

       
                 

                                                                     (1.2)                                  

       (      
      )                                                                                      (1.3)                              

                                                                                                                 (1.4) 
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Proof   we use an approach due to G. Prodi [11] we have : 

 

{

       
                   

∫      
 

 

                                                                                   (1.5)                                                 

We introduce the Prodi idea (1. 5) in (1.1.1) we having   

              |  |          
                                                       (1.6) 

We consider the derivative of (1.6) we obtain  
 

  
             |  |       

  

  
                                                         

(1.7)        

And  

{
∫      
 

 
 

         

               

                                                                                        (1.8) 

We deduce to (1.7) 

       |  |                                                          
(1.9) For resolve (1.7) and (1.8) we denotes. L = -A; (     |  |      

And we define the functional space V: 

  {
       (      

      )          (       
      )        

       (         )  ∫          
 

 
                       

   

(1.10) 
The Banach structure of  V is defined by  

‖ ‖  ‖ ‖
  (      

      )
 ‖  ‖

  (      
      )

 ‖ ‖      ‖ ‖
  (         )  

We define the bilinear form: 

       ∫ [                       ]                                                  
 

 (1.11)  
The weak formulation of (1.7) and (1.8) is to find     such that 

       ∫                                                                                                      

 

 
 

But        not coercive. 

Then we following some ideas of Lions for obtain the elliptic regularization, 

given   > 0 and       , we define 

             ∫ [                  ]   ∫                  

 

 

  

    

 

 

      
 

The application           is continuous on   so there exists an application 

      
          = (                                                                               (1.14) 

The linear operator     :   →  ′satisfies the four properties: 

   is bounded in   ′ for all bounded set in   and is a hemi continuous and is a 

strictly monotonous and is coercive. 
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In view of these properties and as consequence of theorem of Lions [4], there 

exist unique a function        

         ∫                                                                                                  

 

 
 

2.1 A priori estimates I 
Explicitly the elliptic regularization (1.15) and setting   =   , we obtain: 

 ∫ [|   
 |

  ‖  
 ‖

 ]   ∫[|  
 |

      
    

 
  ]   

 

 

 ∫        

 

 

                                    

    

 

 
 

Or    

∫              ‖  ‖
     
 

         ∫      

 

 

    ‖ ‖
  (      

      )
                                                                                                               

    

 

 
 

  ‖  ‖
  (      

      ) 

Then 

  
  is bounded in       when                                                               (1.17) 

 ∫ [|   
 |

 
 |  

 |
 
 ‖  

 ‖
 
]                                                                                                         

    

 

 
 

Or 

∫        
 

   We have by (1.17) and (1.18) that: 

   is bounded in                                                                                       (1.19) 

And 

 ∫‖  ‖
                                                                                                                                               

    

 

 
 

2.2 A priori estimates II 
Exchange in (1.15) v with: 

      ∫       
 

 
∫            

 

 

 

 

                                                                
 

We verify that: 

{
∫   

 

 

         ∈  

      

                                                                                              
 

Taking into account (1.21) in (1.15) we get 

 ∫ [    
   

 
      

          
     ]   ∫[    

         
     ]  

 

 

                                                                          ∫[    
   

 
      

          
     ]          
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 ∫ ‖  ‖
   

 

 

  ∫       
           ∫        

 

 

                                        

 

 
 

By using periodicity of              we obtain: 

∫    
   

 
     ∫    

         

 

 

                                                          

    

 

 

             
 

And 

∫(   
    )   (  

          )  (  
          )  ∫   

   
 
    

 

                                                   
    

 

  

  ∫|  
 |

   

 

 

                                                                                                               
 

By (1.24) and (1.17) we have 

|∫  (   
    )  

 

 

|                                                                                       
 

     
Also, from (1.17) and (1.19) we obtain: 

  

|∫       
        

 

 

|   ‖    
  ‖      ‖  ‖                                                 

 

     
                                                     

   ∫  ‖  ‖
        

 

 

                                                                                                          
 

2.3 Passage to the limit 
From (1.17) and (1.28) that there exists a subsequence from     , such that 

                    (      
      )                                                                         

                                                                                                                  
    

                                                                                                            
Passage to the limit in (1.15) we obtain 

∫[                        ]   ∫          

 

 

       ∈                           

 

 
 

Use the convolution technical in (1.32) we have 
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∫               ∫                

 

 

      ∈                                        

 

 
 

When 

∫          ∫          

 

 

          ∈                                                                   

 

 
 

3 Uniqueness of solution: 
Theorem 
Under the hypotheses of the theorem of existence, we consider two solutions u₁ 
and u₂ of the problem (P) then u₁= u₂  

Proof:  We subtract the equations (1.9) corresponding to u₁ and u₂ and sitting 

  = u₁-u₂ we have: 
 
         ₁      ₂                                                                                            

Denoting by (  ) the regularizing sequence a similar argument by Brézis [2] we 

obtain 

 
                                                                                                             

Hence, by using (1.2) and (1.3), we have 

     
 
  

 
∈           (      

      )                                                                           
From (2.2) we get  
 
                                                                                           

Show that 

∫                                                                                         

 

 
 

When 

 

∫
 

  
               

 

 

 ∫                 ∫                     

 

 

   

 

 
 

                                                                                                                             
Therefore 

∫                     
 

 
∫

 

  
                                        

 

 

    

 

 

     
 

 
        periodic then we have 

∫                ∫                 ∫                     

 

 

 

 

 

 

     
 

From (2.1); (2.6) and (2.7) we obtain: 
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∫    
      

    
                                                                             

 

 

     
 

Passage to the limit in (2.8) we have 

∫    
      

    
 
    

                                                                        

 

 

      

Where 

  
    

   ⇒   
    

                                                                                            
This implies that 

   =   -   = θ, θ independent of t                                                                           
                                                                                                                                    

∫                ∈                                                                                        

 

 

      
 

We deduce from (1.2) 

      
                 

                                                                                     
By (2.12) and (2.13) and using theorem of Green we have (Aθ,θ) = 0⇒ θ = 0.                                         

Where the uniqueness of solution. 
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