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Abstract. In this paper, a non-intrusive stochastic model reduction scheme is de-
veloped for polynomial chaos representation using proper orthogonal decomposition.
The main idea is to extract the optimal orthogonal basis via inexpensive calculations
on a coarse mesh and then use them for the fine discretization analysis. The devel-
oped reduced-order model is implemented to the stochastic steady-state heat diffusion
equation. The random conductivity field is approximated via the Karhunen-Loeve
(KL) expansion. Input random variables are uniformly distributed so that the Gauss-
Legendre quadrature scheme is utilized for the numerical integration. The numerical
results showed that the non-intrusive model reduction scheme is able to accurately
reproduce mean and variance fields. It is found that the computation-time of the
reduced-order model is lower than that of the full-order model.
Keywords: Uncertainty Quantification, Polynomial Chaos, Reduced-order Model.

1 Introduction

In many engineering applications, uncertainty in physical properties, input data
and model parameters result in uncertainties in the system output. A repre-
sentative practical example is design of turbomachineries where uncertainties
in flow conditions and small variations in structural parameters of compo-
nents(e.g. blade profile) can have a significant impact on the performance. For
design refinement of such complex mechanical devices, it is necessary to include
all uncertainty information in the output results using uncertainty quantifica-
tion (UQ) schemes. However, many complex applications require a fine 3D
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computational mesh, small time-step and high-dimensional space for stochas-
tic analysis. This dramatically increases the computational cost which is not
desirable for design proposes. Thus, it is necessary to employ efficient numerical
schemes for stochastic analysis of complex industrial flows. A variety of differ-
ent uncertainty quantification methods such as Monte Carlo approach, sensi-
tivity method, perturbation method, regression method and polynomial chaos
have been proposed for uncertainty quantification. All of these techniques have
positive and negative features, and no single technique is optimum for all situ-
ations. Following our previous work on UQ (Dinescu et al. [1] and Wang et al.
[7]), here we employed Polynomial Chaos (PC) approach to model uncertainty
propagation. Polynomial chaos methods have been successfully applied to solid
mechanics problems by several researches (See for example Ghanem and Spanos
[3] and Doostan et al. [2]). PC schemes have also been employed for a number
of fluid mechanics problems by a number of researchers such as: Walters and
Huyse [6], Mathelin et al. [4] and Dinescu et al. [1]. The polynomial chaos rep-
resentation can be used for different Probability Density Functions (PDFs) and
can be implemented through either intrusive or non-intrusive methods. The
intrusive approach requires the modification of the CFD codes and this may be
difficult, expensive, and time consuming for many CFD problems. Moreover,
the source codes of most commercial CFD softwares are not accessible and thus
it is impossible to implement the intrusive PC approach to such softwares. For
these reasons, here we focused on non-intrusive PC methodology with uniform
PDF for uncertainty quantification. The main shortcoming of all PC methods
is the curse of dimensionality. Developing efficient reduced-order models for
shortening the computational cost associated with the stochastic analysis is
of great interest for prediction of complex industrial flows with large number
of uncertain parameters. In recent years, several model reduction techniques
have been proposed for uncertainty quantification. Two informative examples
of such works are: Nouy [5] and Doostan et al. [2]. In Nouy [5] a Generalize
Spectral Decomposition (GSD) was proposed that gives the reduced basis in-
dependent of the stochastic discretization scheme. The GSD implementation
to a class of Stochastic Partial Differential Equations (SPDE) leads to drastic
computational saving though does not circumvent the curse of dimensionality.
Doostan et al. [2] proposed an intrusive model reduction technique for chaos
representation of a SPDE to tackle the curse of dimensionality. A 2D test case
from solid mechanics is chosen to illustrate the accuracy and convergence of
the model.
In this work, a non-intrusive reduced-order technique is developed and ap-
plied to the 2D steady-state stochastic heat diffusion equation. This paper
is organized as follows. In Section 2 we present the details of mathematical
formulation and problem under investigation. In Section 3, the model reduc-
tion methodology is described. Finally, in Section 4 the numerical results are
presented and discussed.
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2 Mathematical Formulation

To demonstrate the non-intrusive stochastic model reduction algorithm, 2D
steady-state stochastic heat conduction in a square plate of side 2a is considered
(see Figure 1). The 2D heat diffusion with random thermal conductivity is
described by the following SPDE:

∂
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(k(x, y; ζ)

∂T

∂x
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As shown in Figure (1), the top boundary of the plate is at hot temperature

Fig. 1. Schematic of computational domain.

Th whilst the side and bottom boundaries of the plate are at cold temperature
Tc. The thermal conductivity of the plate, k(x, y; ζ), is assumed to be a two-
dimensional homogeneous random process with known mean k̄(x, y) and known
covariance function:

R(x1, y1;x2, y2) = σk
2e−|x1−x2|/bx−|y1−y2|/by (2)

where bx and by are the correlation lengths in x and y directions, respectively,
and σk is the standard deviation on the thermal conductivity.
A key ingredient here is the representation of stochastic thermal conductivity
field as a Karhunen-Loeve (KL) expansion, a type of Fourier expansion for
random functions, which amounts to a discretization in the space of random
events. According to the KL expansion, the eigenvalues and eigenfunctions are
obtained by solving the following 2D integral equation:∫

D

R(x1, y1;x2, y2)φn(x2, y2)dx2dy2 = λnφn(x1, y1) (3)

Separation of kernel (2) as R(x1, y1;x2, y2) = σk
2e−|x1−x2|/bx .e−|y1−y2|/by and

substitution in (3) leads to two identical 1D integral eigenvalue equations in
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x and y directions. Solution of the integral equations give eigenvalues (i.e.

λ
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i and λ

(y)
j ) and their corresponding eigenfunctions (i.e. φ

(x)
i and φ

(y)
j ). As

described in Ghanem and Spanos [3], the complete form of KL expansion for
random process k(x, y; ζ) is:

k(x, y; ζ) = k̄(x, y) +
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Having obtained an analytical expression for the thermal conductivity, the
SPDE (Equation (1)) is discretized using an explicit central differencing scheme
in a uniform grid (∆x = ∆y), see Figure 1. Thus, for any set of ζ ≡ {ζi}ni=1,
first thermal conductivity is calculated in the computational domain using KL
expression (Equation (4)). Then, the new temperature Tn+1 at grid node (i, j)
is obtained from old nodal temperature Tn of neighbouring nodes. The solution
is converged when the maximum error between the old and new temperature
values is sufficiently small(ε ' 10−9).

3 Model Reduction Methodology

In the classical polynomial chaos expansion, the random temperature field
T (x, y; ζ) can be decomposed into deterministic and stochastic components.
The PC representation of temperature field of order p for n random variable
ζ ≡ {ζi}ni=1 can be written as:

T (x, y; ζ)− < T (x, y) >=

P∑
i=1

Ti(x, y)ψi(ζ) (5)

where the total number of terms are P + 1 = (p+ n)!/p!n! and the mean value
of T (x, y; ζ) is expressed as:

< T (x, y) >=

∫
ω

T (x, y; ζ)f(ζ)dζ (6)

In the above equation, f is Probability Density Function (PDF). Here we as-
sumed random variables are uniformly distributed over interval [-1,1] and thus
the PDF is f = 1/2n for n random variables {ζi}ni=1. The non-intrusive method
uses spectral projection to find the PC expansion coefficients Ti(x, y) in Equa-
tion (5). Projecting Equation (5) onto the kth basis and use of orthogonality
gives:

Ti(x, y) =
1

< ψ2
i (ζ) >

∫
ω

T (x, y; ζ)ψi(ζ)f(ζ)dζ (7)

The objective of the spectral projection method is to compute the polynomial
coefficients by evaluating numerator in Equation (7) numerically, while the
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dominator can be computed analytically for multi-variant orthogonal polyno-
mials. Here we used the n-dimensional Gauss-Legendre quadrature to compute
the projection integrals in Equation (7) as:

Ti(x, y) =
1

< ψ2
i (ζ) >

q∑
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...

q∑
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(wi1
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in
n )
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i1
1 , .., ζ

in
n )f(ζi11 , .., ζ

in
n ) (8)

where (ζk,wk), k = 1, 2, .., q are the one-dimensional (1D) Gauss-Legendre
integration points and weights.
The above classical expansion dose not represent an optimal PC representation
of T (x, y, ζ). To find the optimal PC expansion one can consider the fact that
spatial discretization errors and random discretization errors may be decoupled.
Therefore, one can minimize the random discretization errors on the coarse grid
and then solve the real physical problem on a fine mesh by using limited number
of optimal random basis {zi}mi=1 (obtained in the coarse grid analysis) where m
is the number of dominated eigenvalues. The first step in the model reduction
scheme is to find optimal PC basis using POD; a well-known procedure for
extracting a basis for a model decomposition from an ensemble of realizations.
To this end, suppose in a coarse grid, expression (9) represents an optimal PC
expansion of the stochastic temperature field T (x, y, ζ);

T (x, y; ζ)− < T (x, y) >=

m∑
i=1

T i(x, y)zi(ζ) (9)

Now in the coarse grid, the covariance function C(x1, y1;x2, y2) of temperature
field can be obtained from:

C(x1, y1;x2, y2) =

P∑
i=1

Ti(x1, y1)Ti(x2, y2) < ψ2
i > (10)

The corresponding eigenvalues νi and eigenfunctions φi(x, y) are the solution
of the following eigenvalue problem:∫

D

C(x1, y1;x2, y2)φi(x2, y2)dx2dy2 = νiφi(x1, y1) (11)

The upper limit m in the Equation (9) can be found by the size of dominant
eigenspace (10) such that

∑m
i=1νi/

∑
i νi ≥ 0.99.

Having obtained Ti(x, y) from classical PC on the coarse grid and eigenfunctions
φi(x, y) from the solution of eigenvalue problem (11), the set of optimal basis
{zi}mi=1 can be now represented as a linear combination of the set of classical
polynomial chaos; {ψi}Pi=1 using the following scalar product:

zi(ζ) = [T (x, y; ζ)− < T (x, y) >,φi(x, y)] =

P∑
j=1

αijψj(ζ) (12)

The scalar product of functions v and w is defined as: [v, w] =
∫
x
v.wdx.
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where coefficient αlj are obtained via the scalar product:

αij =

∫
R

Tj(x, y)φi(x, y)d−→x d−→y (13)

One now dose the classical polynomial chaos on a fine mesh, where zi are used
instead of ψi. For 1 ≤ i ≤ m, the coefficients in expansion (9) are obtained
from:

T i(x, y) =
< T (x, y; ζ), zi >

< zi, zi >
=

1

νi

P∑
j=1

αij < T (x, y; ζ), ψj > (14)

4 Results and Discussion

We now examine the performance of the reduced-order model by analyzing the
2D steady-state heat conduction equation. It is assumed that the top wall is
at Th = 300◦C and side and bottom walls at Tc = 100◦C. First, a 2D KL
expansion is performed using the exponential kernel with a standard deviation
of σk = 1.0 W/m.K and correlation lengths of bx = by = 10.0 m. The mean
thermal conductivity is assumed to be k̄ = 5.0 W/m.K. The first six largest
terms in the KL expansions are chosen for further analysis.
Figures 2 and 3 respectively show the distributions of eigenvalues and | αij |
coefficients obtained from the coarse discretization analysis on a 5 × 5 mesh
when a second-order Legendre polynomial (p = 2) is employed. From these
figures it can be concluded that only two (m = 2) basis functions (i.e. z1 and
z2) are adequate for the fine discretization analysis. Thus, fine discretization
analysis is performed using the new z1 and z2 basis functions on a 41×41 mesh.
The computed mean and variance fields using full- and reduced-order models
are compared in Figure 4. It is visible the fine grid computations via reduced-
and full-order models resulted in identical results for the mean temperature
field. Moreover, full- and reduced-order analysis on the fine mesh produced
very similar variance fields. In Figure 4(f), regions of high absolute relative
error (about 10%) are visible in the top corners of the domain. This error can
be reduced by considering more basis functions (e.g. z3) in the PC expansion
but the reduced-order computational cost will also increase.
The ratio of computation-time for the reduced-order analysis to the time needed
for the full-order calculation using five fine meshes of 21× 21, 26× 26, 31× 31,
36 × 36 and 41 × 41 is shown in Figure 5. A coarse mesh with 10 × 10 grid
nodes is used for the coarse grid analysis. This figure shows that for the present
problem with six random variables, the reduced-order model is less expensive
than the full-order model when a 21× 21 mesh is used. By increasing the size
of the fine mesh to 26 × 26 the advantage of the reduced-order model over
the standard PC becomes more evident. It is seen that with the reduced-order
model about 20% saving in CPU-time can be obtained when a mesh with 41×41
nodes is used for the fine scale discretization. Further saving in the CPU-time
may be achieved by combination of the current reduced-order model with other
efficient numerical schemes such as for example sparse sampling schemes for the
stochastic discretization and multi-grid methods for the spatial discretization.
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Fig. 2. Computed eigenvalues using coarse discretization analysis.

Fig. 3. Computed | αij | using coarse discretization analysis.

Conclusion

In this paper, a non-intrusive model reduction technique for PC expansion is
presented and discussed. The reduced-order model is applied to the 2D steady-
state heat diffusion equation. Distributions of mean and variance obtained
from the reduced-order model are compared with those of full-order model.
The numerical results show that the developed reduced-order model is able to
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Fig. 4. Comparison of mean and variance fields.

Fig. 5. Ratio of reduced-order computation-time to the full-order computation-time.
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produce acceptable results for such statistical quantities. Computation-time of
the reduced-order model is found to be lower than that of the full-order model.
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