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Abstract: Catastrophe theory and deterministic chaos constitute basic elements of the 

science of complexity. Elementary catastrophes were the first form of nonlinear, 

topological complexity that were seriously studied in economics. Deterministic chaos 

and other types of complexity succeeded catastrophe theory. In general, chaos means the 

seemingly random behavior of a deterministic system, which stems from high sensitivity 

to its initial conditions. Nonlinear dynamical systems theory, which unites various 

manifestations of complexity into one integrated system, is contrary to the assumptions 

that markets and economies spontaneously strive for a state of equilibrium. To the 

contrary, their complexity seems to grow due to the influence of classic economic laws. 

In my paper, I indicate that with time, model economic systems strive for a state we call 

“the edge of chaos”. I consider two cases. The first case concerns an economy based on a 

two-stage accelerator, where the economic cycle adopts the form of chaotic hysteresis. 

The second case concerns a Cournot-Puu duopoly model in which striving for the edge of 

chaos stems from profit maximization by entrepreneurs. The evolution of systems at the 

edge of chaos can be sudden, which makes it necessary to consider it in terms of 

elementary catastrophes. 

Keywords: Cusp catastrophe, Chaotic hysteresis model, Cournot-Puu duopoly model, 

Edge of chaos, System classification, Economic transformation, Rule of progressive 

complexity. 

 

1. Introduction: Foundations of catastrophe theory 
1.1. Classification Theorem 

The theory of catastrophes, also known as the theory of morphogenesis, 

appeared in science in the mid-1970s [25]. It is a general method of system 

modeling focusing on the way in which discontinuous effects can emerge from 

continuous causes. Let the dynamic system be represented by a smooth 

function: 

RRR  nkf : , (1) 

where 
k

R  is a control space representing a set of causes, whereas 
n

R  is a 

space of states (behavior) representing a set of effects. The function f is called a 

potential function. If the internal dynamics of the system consist in striving for a 
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local maximum, then the potential function can represent the probability of it 

being found. 

The basis of catastrophe theory is the classification theorem [26]. This states 

that if the co-dimension k of elementary catastrophes is bigger than 5, they 

create a finite family of discontinuous transition types. Every sudden dynamic 

change can be assigned to one of those types. The relation between the number 

of catastrophes and the co-dimension is shown in Table 1. 

 

Table 1. Elementary catastrophe classification in relation to the co-dimension k 

Co-dimension value (k) 1 2 3 4 5 6 7 … 

Number of elementary 

catastrophes 
1 2 5 7 11   

 

From an application point of view, the case k = 4 is important, since
4

R  can be 

interpreted as a physical space-time in which all events take place. There are 

seven types of singularities in this case: fold, cusp, swallowtail, butterfly, 

hyperbolic umbilic, elliptic umbilic, and parabolic umbilic [5]. 

The application of the catastrophe theory in economics is possible only when 

the law governing a given phenomenon or process has been well-defined. In 

such a case, the catastrophe theory will facilitate the choice of the easiest 

mathematical structure, which will generate a behavior closest to real. Another 

equally point is to use metaphors properly [8]. 

 

1.2. The cusp catastrophe 

The cusp catastrophe is one of the most common elementary catastrophes in 

economic applications. The potential function has the following form: 

 

RRR  12:f , (2) 

 

Thus, the control space is two-dimensional, whereas the state space is one-

dimensional. The function (2) has a simple multinomial representation: 

 

  xcxcxxccf 2
2

1
4

21
2

1

4

1
,,  , (3) 

where x stands for the state variable, whereas 1c  and 2c  are the control 

parameters [28]. The manifold of the catastrophe defining the surface area of the 

system equilibrium is dependent on the following formula: 
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The system proceeds along this surface in a continuous way, until it comes 

across a set of singularities. There is then a sudden jump to another equilibrium 

surface and the continuous evolution continues until the next jump. 

2. Deterministic chaos 
2.1. Nonlinearity as a necessary condition for complexity 

In order to define nonlinearity it is necessary to clearly define linearity. In all 

linear systems, the binding rule is the rule of superposition. This states that the 

system’s reaction to two or more stimuli is the sum of reactions triggered 

individually by each of these stimuli. If factor A triggers reaction X, and factor B 

reacts to Y then the factor (A + B) results in (X + Y). In other words, linear 

systems are additive.  

The rule of superposition implies the linearity of the system if we supplement it 

with the condition of homogeneity. A lack of additiveness and homogeneity 

implies the nonlinearity of the system. The main causes of nonlinearity in 

economics are: 

 Limitations imposed on the economic variables [2]. 

 Technical-balance laws of production [15]. 

 Technical-organizational factors [10]. 

 Bounded rationality [24]. 

 Processes of expectation formation [4]. 

 Adaptive processes of economic-agent learning [3]. 

 The shape (protuberance) of the indifference curves. 

 Aggregation processes of some variables [27]. 

 Evolution of competition rules [3]. 

 Psychological laws [14]. 

Nonlinearity is a necessary condition, but it is not enough to trigger chaos. 

Statistical tests confirm that nonlinearity is a phenomenon that is common in 

economic time series, and part of them proves that deterministic chaos exists. 

There are strong grounds to claim that in the future, the role of nonlinearity in 

economic explorations will become more significant. 

 

2.2. The butterfly effect 

Deterministic chaos means a seemingly random behavior of the deterministic 

system, thus one which is strictly subject to specific rules. The reason for the 

stochastic behavior of some nonlinear deterministic systems is their unusually 

sensitive dependence on initial conditions, which was named ‘the butterfly 

effect’ by Lorenz [16]. A slight disturbance in the initial conditions after some 

time causes significant changes in the system behavior as trajectories begin to 

disperse exponentially. As picturesquely described Lorenz, a proverbial flap of 

butterfly wings in Brazil can cause a tornado in Texas. 
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The Lyapunov exponents are amongst the most frequently-used quantitative 

measures of the trajectory divergence. This notion has been used by Oseledec 

[20] in a well-known multiplicative ergodic theorem. The Lyapunov exponent 

for one-dimensional map is as follows: 

     
0

000

0ε
ln
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lim

ε

ε
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xd

xfd
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nn
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



 . (5) 

Symbols 
nfff ,,, 21   stand for subsequent iterations, 0x  and 0x  are 

the initial conditions for the two trajectories. The number 0  is very small. 

With every iteration, the distance between the trajectories increases 

exponentially. This definition can also be generalized with multi-dimensional 

systems. The number of exponents has to correspond to the number of 

dimensions. If the largest exponent of a dynamical system is positive, this 

indicates a chaotic trajectory, while an exponent equal to zero indicates the 

bifurcation point, and a negative value means convergence of the trajectory with 

the constant point of attraction or a periodic attractor. 

The basic notion of nonlinear dynamical systems theory is also the notion of an 

attractor, primarily a chaotic attractor. Let F stand for a map of m-dimensional 

space into itself. The compact set A, which is situated in the m-dimensional 

space, we call the attractor for F if it meets the conditions of invariance, density, 

stability and attraction. An attractor is a chaotic attractor if it contains a chaotic 

trajectory [19]. 

 

2.3. System classification in nonlinear dynamical systems theory 

In order to compare the subjects of conventional science, the theory of 

deterministic chaos, and the theory of complexity, we can classify systems 

based on the following criteria: the number of constituents of the system N and 

the average number of links between these elements K (see [11, 12, 13]). 

Depending on the relationship between these parameters, we can distinguish 

three types of the NK systems: 

 Type I – subcritical systems. The number of links is very small, given the 

number of elements. Every element is technically independent from others, 

thus the behavior of the whole system can be treated as a simple sum of its 

parts. Because the rule of superposition is met in such a case, systems of this 

type are approximately linear. Their dominating behavior is striving for 

states of equilibrium. 

 Type II – critical systems. The average number of links is substantially 

greater than in the subcritical systems. These systems are characterized by 

more complex dynamics and can reveal emergent properties [7]. Local 

changes can be dispersed in a system so they usually do not bring about 

global consequences. These types of systems often balance on the edge of 

chaos (this is a state when the system’s ability to survive is the greatest and 

its computing power reaches maximum value). 

 Type III – supercritical systems. The ratio of the number of links to the 

number of elements approaches one. It is a state in which almost every 
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element is interlinked with all the rest. It includes deterministic systems, 

which are characterized by complex dynamics. 

The largest Lyapunov exponent for subcritical systems is negative, for critical 

systems it oscillates around zero, whereas for supercritical systems it is positive. 

Classical science deals with systems of type I, the theory of chaos explores 

systems of type III, whereas the subject of interest for the theory of complexity 

is type II and the transitions between various types of systems (see [7, 21]). 

3. Applications in economics 
3.1. The theory of economic transformation 

The first step towards elaborating a theory of transformation was taken by 

American researchers who formulated a model of chaotic hysteresis (see [22, 

23]). Two basic nonlinear dynamical systems theory methods were applied 

concurrently, i.e. elementary catastrophes and deterministic chaos. The starting 

point is a socialist economy. According to the Marxist convention, the economy 

was divided into two sectors: consumption-goods and capital-goods. The notion 

of a technological gap and the cusp catastrophe were used to describe social-

economic crises. The attractor in the form of a chaotic hysteresis that appears in 

a reformed economy is a result of a two-phase activity of a nonlinear 

accelerator.  

The dynamic system is described by a two-dimensional formula: 

ttt ZII  1 , (6) 

  1
3

11   tttt IvZZuZ , (7) 

where: tI  – total investment within the period t, tZ  – increase in the 

investment, whereas symbols u and v means respectively the values of 

accelerators in the capital-goods sector and in the consumption-goods sector. 

These formulas cannot be solved analytically, but they can be the subject of 

numerical explorations. 

An analysis of the system (6)–(7) was conducted assuming the constant value of 

the accelerator in the sector of capital goods u = 2, whereas the value of the 

parameter v was gradually decreased. For 0.01  v  0.1395 in the phase space 

of the system there is an investment cycle in the form of a chaotic attractor. 

Lowering the value of the accelerator of the consumption-goods sector means 

the metamorphosis of the attractor – eventually for the value of v = 0.00005 it 

takes on the form of chaotic hysteresis. The attractor in this form is featured in 

Figure 1. In the model, there is a trade-off between complexity (chaos) and 

instability, understood as the increase of period and amplitude of oscillation of 

investment [6]. 

The next element of the theory is the technological gap (G), which stems from 

the higher rate of capital-intensive nature of production in socialism compared 

to a capitalist economy. Paradoxically, this phenomenon is a result of pursuing 

the postulates of stability of production and full employment, which were to 

make socialism a system more bearable for people than capitalism with its 

chronic unemployment and crises. 
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Another step is to introduce the cusp catastrophe, whose space area of 

equilibrium meets condition (4). In the theory under investigation, the variable 

of this state is the probability of an introduction of market reforms )(sPx  , 

the bifurcation parameter is the dimensions of the technological gap Gc 1 , 

whereas the asymmetric parameter is the rate of growth of investment 

IZc 2 . In the Figure 2 there is a geometrical interpretation of the 

morphogenetic model of transformation. 

The space of the catastrophe equilibrium describes various scenarios of 

economic crises and the corresponding reforms that sought to answer them. For 

G = 0 we have an example market economy. The occurrence of the 

technological gap, which happens after passing through the beginning of 

catastrophe, causes a division of the equilibrium space into two layers – an 

upper and lower. They suggest the occurrence of nonlinear changes in the 

probability of transformation, whenever the rate of investment growth reaches a 

necessary value. Sudden leaps take place when the asymmetric factor crosses 

the bifurcation set of the catastrophe located in the parameter space marked by 

the following formula: 

 

 

–6,000 6,000 

–1.15 
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Figure 1. The chaotic attractor in the form of chaotic hysteresis for 

u = 2, v = 0.00005 
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1213  ccccB . (8) 

Numerical explorations of model (6)–(7) have shed new light on a certain 

macroeconomic problem which has been neglected by mainstream economics 

regarding the macroeconomic costs of the reform complexity. An intuitive 

understanding of this category of costs is known from the theory of the 

corporation [18]. The global financial crisis prompted a wider look at the 

complexity of economic processes and the accompanying problems [1]. An 

economy under transformation is vulnerable to falling victim to trade-offs 

between complexity and instability, which accounts for the fact that benefits 

stemming from reforms can, over a long period of time, consolidate below the 

costs of complexity. It is a new, quality-based position in the balance of 

transformation. Future research should focus on methods of its measurement. In 

addition, it constitutes a challenge to economic policy, which should seek to 

simplify economic life. 

 

3.2. The rule of progressive complexity 

 

Mathematical studies of standard nonlinear economic models have revealed an 

interesting regularity, which I called “the rule of progressive complexity” [9]. It 

appears that there are two active forces in economic systems. The first force is 

short term in nature, and its source stems from rational, typical endeavors of 

sP

3B Gc 1

IZc 2

 
 

Figure 2. Geometrical interpretation of a morphogenetic transformation 

model 
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business entities. One of the manifestations of this activity is profit 

maximization by producers and maximization of utility by consumers. As a 

result, these systems seek a state of short-term equilibrium. The second force is 

active over a long period of time and even though its source is identical to the 

first one, the effects are totally different. It destabilizes the short-term states of 

equilibrium and pushes market structures towards a state known as “the edge of 

chaos”. It is a transition field between a periodic behavior and chaotic behavior, 

where the computing power of systems, which means their ability to collect and 

process information, reaches its maximum. The complexity of a system, which 

can been measured by Lapunov exponents, increases in this field. 

Let us consider a duopoly model using the following equations: 

 

t
t

t y
a

y
x 1 , (9) 

t
t

t x
b

x
y 1 , (10) 

 

where: x – the production output of the first entrepreneur, y – the production 

output of the second entrepreneur, whereas a and b stand for their marginal 

costs, respectively. In the static version, these equations set the reaction 

functions. Each of them describes the choice of the production output made by 

an entrepreneur assuming that the production output of their competitor is 

known. The collision of these two functions takes place at the point known as 

the Cournot-Nash equilibrium point.  

The standard analysis of the model’s stability allows us to set two critical values 

of the marginal costs ratio: 
 

223
a

b

b

a
. (11) 

 

This is where the analytical methods give up. We do not know what happens to 

this model when the stability threshold is crossed, or how it behaves over a long 

period. 

It is best to start numerical explorations of a duopoly (9)–(10) with making a 

period plot [19]. This is a two-dimensional space of parameters in which various 

behavior of the system has been specified (with emphasis on periodic behavior). 

In order to do this, one should define the interval of changeability of both 

parameters and the initial condition of the trajectory bundle. A plot of this type 

allows us to follow the dynamics of the system depending on a simultaneous 

change in two control parameters. 

Numerical explorations of parameter space reveal the following types of 

behavior: states of short-term equilibrium, periodic dynamics, chaos and 

divergent trajectories (see Figure 3). Pairs of parameters responsible for states of 

stable equilibrium account for 82.77% of the parameter space, whereas pairs of 
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chaotic parameters account for mere 0.15% of this space. Consequently, it 

seems that stability predominates and the claims of conventional economics 

have been confirmed. However, it is a false conclusion. Entrepreneurs are 

interested not only in maximizing profit over a short time, but also in the long 

run. Maximizing profit in the long run requires introducing technical-

organizational progress and it results in lowering marginal costs. Consequently, 

every producer strives for one of the two edges of chaos (11), i.e. states with 

growing complexity [9]. 

The system displays a certain type of globally rational behavior which 

contributes to its survival. As of the moment the efficient producer achieves the 

edge of chaos, his long-term profit decreases, and the long-term profit of the 

inefficient producer begins to grow [17]. This leads to role reversal, and in the 

diagram, the market bounces off the edge of chaos. 

4. Conclusions 
Catastrophe means a violent, sudden transition of the tested system into a new 

state. What is important here is the rapidity of the changes in the behavior of an 

object as compared with the mean change in the past. Catastrophe theory merges 

two apparently contradictory and unrelated kinds of phenomena descriptions to 

form one coherent notion system: evolutionism and revolutionism, continuity 

and discontinuity. In economics, the application of catastrophe theory is of great 
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Fig. 3. Dynamics of the Cournot-Puu duopoly in the parameter space 
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cognitive importance, particularly in issues of explanation and forecasting in 

economics. 

In transitional economies, there is a trade-off between complexity and 

instability. In the economic calculation of transformations, a new type of cost 

needs to be considered – the social costs connected with the change of the 

dynamic complexity of the systems. Numerical explorations of an archetypal 

duopoly model have proven that states of equilibrium are stable only for a short 

period. In the long run, such systems strive for the edge of chaos. 
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