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Abstract. Although Fibonacci’s numbers play an important role in modeling phe-
nomena in a wide variety of subjects, their use as descriptors of population growth has
clearly been rather restricted after the introduction of the Verhulst logistic model and
its numerous modifications and extensions. In fact, in the very unrealistic Fibonacci
model neither population extinction nor bounded growth are possible, only quasi-
exponential unbounded population growth can result. We present a modified model
assuming that the number of direct offsprings of each ancestor is a Bernoulli random
variable, hence with positive probability of 0 count, and thus accommodating both
extinction and possible sustainable growth. We compare algebraic and numerical
treatment of equations using the fixed point method in the framework of instabilities
of numerical algorithms for finding roots of equations. On the othe hand, branching
processes are natural models for random population growth in many situations. Here
we use basic count models whose probability mass function satisfies Panjer iteration,
and investigate randomly stopped sums and collective risk when the subordinator
random variable and the summands are independent and identically distributed basic
count random variables.
Keywords: Fibonacci model, Verhulst model, Bernoulli offsprings, branching pro-
cesses, fixed point algorithm instabilities, branching processes, Panjer iteration, basic
count models.

1 Introduction

Let N(t) denote the size of some population at time t. Two main issues in
population dynamics deal with the probability of extinction and with the total
size of the progeny of an ancestor.
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Fibonacci (c. 1170 – c. 1250) in his Liber Abaci posed and solved a prob-
lem involving the growth of a population of rabbits based on idealized and
very unrealistic assumptions. As a consequence, a population with Fibonacci’s
growth pattern never dies out, while we know that the total progeny of some
ancestor is in many real circumstances finite, cf. for instance Lotka [15] ex-
ample (p. 123–136) on the extinction of surnames, using branching processes.
However, Fibonacci’s numbers are still a very active research area, since they
(mainly the initial numbers of the sequence) can approximate quite well counts
in many natural systems, and have been applied successfully in very diverse
situations and areas, namely aesthetic (the golden ratio is pervasive in all form
of plastic arts, and is even used by aesthetic surgeons in beauty improvement),
including for instance Lindenmayer grammars, cf. Prusinkiewicz and Hanan
[20], used by Pestana [18] for an initial investigation of music composition with
repetitive structures.

1.1 Fibonacci population growth model

Fibonacci (c. 1170 – c. 1250) in his Liber Abaci posed and solved a problem
involving the growth of a population of rabbits based on idealized and very un-
realistic assumptions. The solution, generation by generation, was a sequence
of numbers {Fn}n≥0 later known as Fibonacci numbers, starting with {0, 1},
such that Fn+2 = Fn + Fn+1. Using Binet’s formula

Fn =
(1 +

√
5)n − (1−

√
5)n

2n
√

5

the computation of any member of the Fibonacci sequence is straightforward.
Although the wide success of Fibonacci’s sequence as an approximate model

for the first few generations is still praised in many branches of Biology, the
very unrealistic assumption that any couple of rabbits gives birth to exactly
one couple of rabbits as offsprings, and this in each of exactly two succes-
sive mating periods, cannot accommodate important real features in popu-
lation dynamics, such as sustainable growth or even population extinction,
as studied successfully for instance by Lotka [14] using the more realistic
sustainable growth logistic model introduced by Verhulst. In fact, rewrit-
ing Fn+2 = Fn + Fn+1 = 2Fn+1 − Fn−1 =⇒ Fn+2 − Fn+1 = Fn+1 − Fn−1,

the closely associated differential equation d
dt N(t) = ∂2

∂t2 N(t) shows that Fi-
bonacci’s growth is approximately exponential. Indeed, we get an approximate

geometric growth with ratio 1+
√
5

2 . Even for moderate values such as n = 11,

say, F12 = 144 ≈ F11
1+
√
5

2 = 144.005 (recall that 1+
√
5

2 is the “golden ratio”

limit of Fn+1

Fn
).

1.2 Verhulst sustainable growth logistic model and extensions

Imposing some natural regularity conditions on N(t), namely that d
dtN(t) =

∞∑
k=0

Ak[N(t)]k, Verhulst ([27], [28], [29]) used the second order approximation
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d
dtN(t) = A1N(t)+A2[N(t)]2, with A1 > 0 and A2 < 0, which can be rewritten
as

d

dt
N(t) = r N(t)

[
1− N(t)

K

]
, (1)

(where r > 0 is frequently interpreted as a Malthusian instantaneous growth
rate parameter, whenever modeling natural breeding populations, and K > 0
as the equilibrium limit size of the population) to develop a broadly successful
“logistic” population growth model, much more realistic to model sustainable
growth. In fact, an initial period of exponential growth if followed by moderate
approximately linear growth, with exponential steep exponential moderation
when limitation of natural resources (or success of predators or competing
species) ultimately curb down growth to sustainable values.

Moreover, and since in many species there exist periodic mating periods,
using Euler’s ideas on the interplay of differential equations and difference
equations in numerical methods, the associated difference equation

xn+1 = αxn (1− xn), (2)

(where it is convenient to deal with the assumption xn ∈ [0, 1], n = 1, 2, . . . )
made his way in modeling population dynamics.

The equilibrium xn+1 = xn leads to a simple second order algebraic equa-
tion with positive root 1 − 1/α, and to a certain extent it is surprising that
anyone would care to investigate its numerical solution using the fixed point
method, which indeed brings in many pathologies when a steep curve — i.e., for
some values of the iterates |α (1−2xn)| > 1 — is approximated by an horizontal
straight line. This numerical investigation, apparently devoid of interest, has
however been at the root of many theoretical advances when α /∈ [1, 3] (namely
Feigenbaum bifurcations and ultimate chaotic behavior), and a posteriori led to
many interesting breakthroughs in the understanding of population dynamics.
Due to its close association with the differential equation (1), whose solution
is a logistic function

N(t) =
KN0

N0 + (K −N0) e−rt
, (3)

the parabola x (1 − x) appearing in the discretization (2) is very often called
the “logistic parabola”.

Up to a multiplicative constant, the logistic parabola is the Beta(2, 2) prob-
ability density function. In Aleixo et al. [1], and in Rocha et al. [23] several ex-
tensions of population growth models tied to more general Beta(p, q)densities
have been investigated, and in Pestana et al. [17] the factor 1 − x has been
considered the linear truncation of − lnx, so obtaining differential functions
whose solution exhibits Paretian tail behaviour and ultimately extreme value
models (Gumbel, Fréchet or Weibull) solutions for the associated differential
equation d

dtN(t) = r N(t) (− ln(N(t))1+γ . Tsoularis [26] and Waliszewski and
Konarski [30] must be credited for the Gompertz (or Gumbel) solution when in
the associated differential equation γ = 0. Tsoularis [26] is a very informative
state-of-the-art on population growth models. Brilhante et al. ([3], [4]) provide



498 Brilhante, Gomes and Pestana

the connection between the solution of the above extensions of the original Ver-
hulst equation to extreme value and Rachev and Resnick [21] geo-extreme value
(i.e., when the original sequence is subject to Rényi’s [22] rarefaction, equiv-
alent in its final results to Kovalenko’s [12] and Kozubowski’s [13] geometric
thinning).

1.3 Modified Fibonacci models

We shall discuss, using branching processes, several modifications of the Fi-
bonacci model, so that more realistic possibilities, such as limited growth or
even extinction, may occur:

1. A framework very similar to the original description posed by Fibonacci:
each ancestor can produce direct offsprings only in the first two consecu-
tive reproducing periods. However, instead of deterministically producing
exactly one offspring in each reproducing epoch, the number of offsprings
is a random X _ Bernoulli(p).

2. A simple modification, which has the advantage of affordable algebraic
treatment, is to consider that the progeny (it is indifferent whether we count
individuals in the case of non-sexual reproduction, or couples in the case of
sexual reproduction) is a random Y _ Geometric(p). The hypothesis that
in sexual reproduction we consider that the progeny is solely of couples, and
that each of those behaves as a faithful couple, is indeed as unrealistic as
what has been taken for granted as an assumption in the original Fibonacci
model. But the wider variability of the number of offsprings of each ancestor
at each reproducing period, with sensible choices so that the mean value
E(Y ) = (1− p)/p is rather small, can produce more realistic results.
Observe, further, that while the Bernoulli random variable is underdis-
persed, i.e. V ar(X)/E(X) < 1, the Geometric random variable is overdis-
persed, So, it can accommodate more realistic wider variability.

3. An almost similar framework as the one described in item 1 is investigated
explicitly assuming removing each progenitor from the system after two
reproduction periods, using randomly stopped sums.

Aside from presenting models allowing for extinction and limited growth,
and hence more realistic than the unlimited quasi-exponential growth of the
original Fibonacci model, our aim is to compare whenever possible algebraic
solutions to numerical solutions using the fixed point method. These indeed
exhibit instabilities whenever the function is too steep in a neighborhood of the
root we wish to calculate.

Although those instabilities are qualitatively quite different from the cele-
brated Feigenbaum bifurcations and ultimate chaos that the discretization of
the Verhulst model brought to the limelights of the structural investigation
of dynamical systems, it seems worthwhile to discuss them, since the philo-
sophical controversy whether pathologies observed in the numerical solution of
equations x = f(x) using the fixed point algorithm are an essential feature or
solely an inherent consequence of instabilities to be expected when |f ′(x)| > 1
in the vicinity of the equation root is far from being settled.
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In this first paper, we shall discuss in depth the Bernoulli randomized model
described in item 1, postponing for a second part other randomizations.

2 Modified Randomized Fibonacci Models: Bernoulli(p)
Offsprings in Each Reproduction Epoch

Let us assume that the process starts with one ancestor (single or couple,
according to the reproduction characteristics of the species). In each of the two
initial reproduction epochs each unit produces X _ Bernoulli(p) offsprings,
and is removed from the process after the the second reproduction epoch. On
the other hand, each offspring becomes an ancestor in the next step, behaving
exactly in the some fashion.

Let Z1 denote the number of units in the system in the first step of the
process, i.e. exactly when the initial ancestor is removed from the system:

Z1 =

{
0 1 2 3

(1− p)2 p(1− p)(2− p) 2p2(1− p) p3
(4)

The probability generating function is

GZ1
(t) = (1− p)2 + p(1− p)(2− p)t+ 2p2(1− p)t2 + p3t3, (5)

and hence the mean value, expressed as a function of p, is

E(Z1) = p(1− p)(2− p) + 4p2(1− p) + 3p3, (6)

which is greater than 1 for p ∈ (
√

2− 1, 1] ≈ (0.414214, 1].
If E(Z1) < 1, extinction is almost sure.
If E(Z1) > 1, defining iteratively xn = GZ1

(xn−1), with initial value x1 =
P[Z1 = 0] = (1 − p)2, xn is the probability that the process terminates at or
before the n-th generation, cf. Feller [5], Theorem p. 297.

The sequence {xn} is increasing, its limit x ≤ 1 being the solution of the
equation

x = GZ1
(x)

In the model at hand, the probability of extinction is therefore

x ≡ xp = min

{
1,

(p− 2) p2 +
√
p3 (4− 4p+ p3)

2 p3

}
, (7)

On the other hand, the total number os descendants from the initial ancestor
up to the n-th generation is Yn = 1 +Z1 +Z2 + · · ·+Zn, where Zk denotes de
number of units in the k-th generation. Following Good [7] (an argument that
inspired Feller [5], XII.5), R1(t) = tG(t) and iteratively Rn(t) = tRn−1(t), we
obtain the probability generating functions for the successive generations.

This is a decreasing sequence, whose limit ρ(s) satisfies ρ(s) = sG(ρ(s)) and
which may be found solving t = sG(t). Each coefficient rk in the MacLaurin’s
expansion of ρ(s) is the probability that the total progeny consists of k elements,
and therefore if

∑
rk = ρ(1) < 1, this is the probability of extinction.
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Fig. 1. Extinction probability xp, in (7), as a function of p in the Bernoulli(p) off-
springs randomized Fibonacci model.

The total progeny is finite whenever the expected value µ = E(Z1) < 1.
Therefore, as E(Zn) = µn, it follows that the expected value of the total progeny
is
∑∞
n=0 µ

n = 1
1−µ .

In this randomized Bernoulli Fibonacci modified model, from solving t =
sG(t) we get

ρ(s) =
2(−p2s+ p3s)

3 p3s
−

(1− i
√

3)A(s)

322/3 p3s
(

(B(s) +
√

4A3(s) +B2(s)
)1/3−

(1 + i
√

3)

621/3 p3s

(
(B(s) +

√
4A3(s) +B2(s)

)1/3 (8)

where A(s) = −3p3s + (2p4 − p5 − p6)s2, and B(s) = 18(1 − p)p5s2 + (7p6 −
12p7 + 3p8 + 2p9)s3.

Plotting the the real part of the above function ρ(s), in (8), for s = 1,
which indeed coincides with (7), we obtain a visual grasp of the probability of
extinction as a function of p, exactly the one given in Fig. 1, using now a more
complex definition of the function to be plotted.

Observe that the equilibrium point p = ρ(p) is 0.513376. The observation
that this is approximately the proportion of male offsprings in the observed
equilibrium of human reproduction is surely circumstantial, or at least we do
not devise any bond tying that empirical observation.

On the other hand, µ < 1 for p <
√

2− 1 ≈ 0.414214. Below, in Table 1 we
register for a few values of p the expected size of the total progeny:

We now compare this analytic solution with the numerical results defining
iteratively xn = GZ1

(xn−1), the probability that extinction does occur at or
before the n-th generation, with initial value x1 = P[Z1 = 0] = (1− p)2.

The successive repeated compositions of a function with itself can be com-
puted using for instance the command “Nest” in Mathematica, and the corre-
sponding evaluation at the appropriate point can then generate a list of coor-
dinates with the command “Flatten”.

In Table 2 we illustrate the result for the choices 0.1(0.1)0.9, and also for the
extreme choices 0.01 and 0.99, and finally for the equilibrium value 0.513376
(using 200 points and 300 iterated compositions of the function with itself.
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p µ Expected size 1
1−µ

0.1 0.21 1.26582
0.2 0.44 1.78571
0.3 0.69 3.22581
0.4 0.96 25

.41421 0.99999... 99246.7

Table 1. Expected total progeny when µ < 1 in the modified Bernoulli randomized
Fibonacci model.

Table 2. Graphical representation of 300 compositions of the generating function
with itself; from left to right and top to bottom, initial 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.01, 0.99, 0.513376.
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From those graphics it is obvious that the use of the fixed point method
leads to instabilities, that seem quite different in nature from the Feigenbaum
bifurcations encountered in the discretization of the Verhulst model and its
various extensions we have mentioned. Further research is needed to interpret
those pathologies in the context of dynamical models.

3 Randomizing the Fibonaccy Population Growth
Model Via Branching Processes

Let {fn}n∈SX denote the probability mass function (pmf) of a discrete ran-
dom variable (rv) X with support SX ⊂ N. The corresponding probability

generating function (pgf) is mX(t) = E(tX) =

∞∑
n=0

fnt
n.

If N is a discrete rv, X0 = 0 and X1, X2, ... independent replicas of X, with

N and Xk independent, and we define the “compound” rv Y =

N∑
k=0

Xk, then

mY (t) =
∑
j∈SY

mj
X(t)P[N = j] = mN (mX(t)). (9)

From this, we may easily compute mean value and variance of the rv Y . An
alternative designation for the concept of compounding rv’s is the concept of
randomly stopped sums, which can have the advantage of explicitly indicating
the type of the subordinator rv.

If in particular Xk, k = 1, 2, ... are independent replicas of a count rv X
modeling the number of direct descendants of each individual (or each female)
in the population, and we define

Y0 = 1, Y1 = X1, Y2 =

Y1∑
k=0

Xk, ... Yn+1 =

Yn∑
k=0

Xk, ... (10)

we may interpret Yk as the number of direct offsprings in the k-th gener-

ation, and Zn =

n∑
j=0

Yj as the total progeny of some ancestor until the n-th

generation. Let us denote m(t) = m1(t) the pgf of Y1
d
=X, mn(t) the pgf of

Yn; then mn(t) = m(mn−1(t) = m⊗(n)(t), where m⊗(n) denotes the n-fold
composition of m with itself.

Following Good [7] (an argument that inspired Feller [5], XII.5), mZ1(t) =
tmX(t) and iteratively mZn(t) = tmZn−1

(t), we obtain the probability gener-
ating functions for the number of descendants up to each successive generation.

This is a decreasing sequence, whose limit ρ(s) satisfies ρ(s) = smX(ρ(s))
and which may be found solving t = smX(t). Each coefficient rk in the
MacLaurin’s expansion of ρ(s) is the probability that the total progeny con-
sists of k elements, and therefore if

∑
rk = ρ(1) < 1, this is the probability of

extinction.



Chaotic Modeling and Simulation (CMSIM) 4: 495–509, 2013 503

{Y0, Y1, ...} is usually called a Galton–Watson branching process, or a cas-
cade process. Simple examples of branching processes, and basic results on
important problems such as extinction probability and size of a population can
be found in Feller [5]. Namely, in what concerns extinction:

Theorem 1. If E(Y ) = µ ≤ 1, the process almost surely dies out, and its

expected size is
1

1− µ
when µ < 1, and infinite when µ = 1. If µ > 1, the

probability fn that the process terminates at or before the n-th generation tends
to the unique root x < 1 of the equation x = mY (x).

And, in what concerns the total progeny:

Theorem 2. Denoting ρk the probability that the total progeny has k individ-
uals,

1. the extinction probability is

∞∑
k=1

ρk.

2. The pgf ρ(s) =

∞∑
k=1

ρks
k is given by the unique positive root of t = smY (t),

and ρ(s) ≤ x.

More extensive monographies on branching processes, with deeper results,
are Harris [8], Athreya and Ney [2] or Jaegers [10]. Gnedenko and Korolev
[6] present interesting examples of random infinite divisibility and random sta-
bility using branching processes, and they establish necessary and sufficient
conditions for the convergence of randomly stopped sums, and limit theorems
for super-critical (i. e., µ = E(X) > 1) Galton–Watson processes.

The Y _ Geometric(p) model for the number of direct descendants, with
pmf {fn = p (1− p)n}n∈N, provides an algebraic simple treatment. In fact,

writing q = 1− p, mY (t) =
p

1− qt
, and

mYn(t) =


p
qn − pn − (qn−1 − pn−1) q t

q−1n− pn−1 − (qn − pn) q t
p 6= q

n− (n− 1)t

n+ 1− nt
p = q = 1

2

(11)

is easily computed.
Both the Bernoulli(p) and the Geometric(p) pmf’s satisfy the recursive

expression

fn+1 =

(
a+

b

n+ 1

)
fn, ∀n ≥ k, fn = 0 for 0 ≤ n ≤ k − 1 (12)
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(in the case of X _ Bernoulli(p), a =
p

p− 1
and b =

2p

1− p
, and in the case

of X _ Geometric(p), a = q and b = 0). As we shall state in the following
section, the above recursive expression is valid for the pmf of a broad class
of rv’s, known as Panjer rv’s, that play an important role on the theory of
collective risk. We investigate some consequences of using simple Panjer direct
progeny models in branching processes.

4 Basic Count Models

We shall say that X is a Panjer rv if its pmf {fn}n∈SX satisfies the recursive
expression

fn+1 =

(
a+

b

n+ 1

)
fn, ∀n ≥ k, fn = 0 for 0 ≤ n ≤ k − 1. (13)

We denote Panjer(a, b, k) the class of all pmf’s satisfying (13).
This expression has been used by several authors, with k = 0, before Panjer

[16], but it was in this seminal paper that the consequences for the iterative
computation of the density of the collective risk process have been established.

In fact, Panjer [16] considered only the case k = 0 — for which the non
degenerate types are the underdispersed binomial, the overdispersed negative
binomial, and the Poisson in between —, but immediatly Sundt and Jewell
[25] published the extension for k = 1, with the logarithmic and the extended
negative binomial solutions.

Finally Hess et al. [9] defined the general class, with the recursion starting
with k ≥ 0, the f0, ..., fk−1 being free parameters (for k = 0, f0 can be consid-
ered the starting jump of a hurdle process); it is also known as the class of basic
count distributions, or class of basic claim distributions. For more details, cf.
Rolsky et al. [24], Klugman et al. [11], and Pestana and Velosa [19].

Theorem 3. Let {fn}n∈SX be the pmf of a non degenerate count rv X.
For a, b ∈ R the statements that follow are equivalent:

(a) {fn}n∈SX is a Panjer(a, b; k) pmf.
(b) for ` ∈ N+, the pgf mX(t) =

∑∞
n=0 fnt

n satisfies the differential equations

(1− at)h(`)(t) = (`a+ b)h(`−1)(t) + fk

(
k

`

)
`! tk−1,

t ∈ [0, 1) and h(j)(0) = 0 for j ≤ k − 1.
(c) mX satisfies the differential equation

(1− at)h(k+1)(t) = ((k + 1)a+ b)h(k)(t),

t ∈ [0, 1) and h(j)(0) = 0 for j ≤ k − 1.

Further, Q = Panjer(a, b; k) =⇒ (k + 1) a + b > 0, and on the other hand
a+ b ≥ 0⇒ a < 1 and a+ b < 0⇒ a ≤ 1.

From this it is easy to conclude that the Panjer class has the following non
degenerate elements:
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1. The Binomial(ν, p), ν ∈ N+, p ∈ (0, 1), which is Panjer( p
p−1 ,

(ν+1) p
1−p , 0).

Its variation index I(X) =
var(X)

E(X)
= 1− p < 1, i.e., X is underdispersed.

2. The Poisson(µ), µ > 0 is Panjer(0, µ, 0). Its dispersion index is 1.

3. The overdispersed NegativeBinomial(α, p), α > 0, p ∈ (0, 1), with pmf{(
α+n−1

n

)
pn(1− p)α

}
n∈N, is Panjer(p, (α− 1) p, 0).

4. The ExtendedNegativeBinomial(α, p, k), α ∈ (−k,−k+1), p ∈ (0, 1), k ∈
N+, with pmf

fn =

(
α+ n− 1

n

)
pn

(1− p)−α −
k−1∑
j=0

(
α+ j − 1

j

)
pj

, n = k, k + 1, ..., (14)

in the support SX = {k, k + 1, . . . }, is Panjer(p, (α − 1) p, k). In the ex-

pression above the extended binomial coefficients

(
α+ n− 1

n

)
are defined

as

(
α+ n− 1

n

)
=

(
−α
n

)
=
Γ (α+ n)

Γ (α)n!
.

5. The ExtendedLogarithmic(p, k), p ∈ (0, 1), k ∈ N+, with pmf

fn =

pn(
n

m

)
∞∑
j=m

pj(
j

m

) , n = k, k + 1, ..., (15)

is Panjer(p,−kp, k).

6. If X _ Panjer(a, b, k), truncating {k, k + 1, ..., `− 1} ⊂ SX we obtain a
truncated rv X∗ _ Panjer(a, b, `).

The special “unit” cases Bernoulli(p) ≡ Binomial(1, p), Geometric(p) ≡
NegativeBinomial(1, p)), ExtendedNegativeBinomial(α, p, 1) whose pmf has

the simple form
1− (1− q t)−α

1− p−α
, t ≤ 1

q ), and Panjer(p,−p, 1) or Logarithmic(p)

(or ExtendedLogarithmic(1, p), with pgf
ln(1− pt)
ln(1− p)

), do have specially nice

properties in each of the corresponding subclasses.
In particular, NegativeBinomial(α, p) — and hence, as a special case

Geometric(p) — that result from a Gamma randomization of the Poisson(Λ),
i.e., an hierarchic model with Λ _ Gamma(α, 1) — are successfully used to
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model the descendance of populations when the distribution of direct offsprings
exhibits large variation, and both the the ExtendedNegativeBinomial(α, p, 1)
and the Logarithmic(p) distributions have been used to provide close fit to
some natural populations.

In Table 2 below we sumarize results, indicating also the pgf mQ(t):

Table 3. Panjer distributions.

X a b k mQ(t)

Binomial(m, p) p
p−1

(m+1)p
1−p 0 (1 − p+ pt)m

Poisson(µ) 0 µ 0 eµ(t−1)

NegativeBinomial(α, p) p (α− 1)p 0 ( 1−pt
1−p )−α

ExtendedNegativeBinomial(α, p, k) p (α− 1)p k
(1−pt)−α−

∑k−1
j=0 (α+j−1

j )(pt)j

(1−p)−α−
∑k−1
j=0 (α+j−1

j )pj

ExtendedLogarithmic(p, k) p −kp k
∑∞
n=k (nk)

−1
(pt)n∑∞

n=k (nk)
−1
pn

5 Randomly Stopped Sums with Panjer Subordinator

The importance of the Panjer class is a consequence of the implications that
the recursive expression (13) has on the recursive computation of the density
of randomly stopped sums subordinated by Panjer rv’s. This results from the
following theorem:

Theorem 4. Let {qn}n∈N be the pmf of a count distribution Y , and {fn}n∈N
denote the pmf of a claim number distribution X whose support is a subset
of the positive integers, i. e. f0 = 0. Consider the randomly stopped sum

T =

Y∑
n=inf SY

Xn, with Y and the replicas Xn of X independent.

Then the following statements are equivalent:
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1. Y _ Panjer(a, b, k);
2. For any claim number rv X and any ` ≥ 1, mT satisfies the differential

equation

(1− amX(t))h(`)(t) =
∑̀
i=1

(
`

i

)
(a+ b

i

`
)h(`−i)(t)m

(i)
X (t) + qkm

(`)
T (t),

t ∈ [0, 1), with the initial conditions h(j)(0) = 0 for j ≤ k − 1.

From this, we can compute the pmf of a compound rv T with Panjer sub-
ordinator Y and count summands independent replicas of X, as defined above,
by observing that for ` ≥ 1

(1− amX(t)) m
(`)
T (t) =

∑̀
i=1

(
`

i

) (
a+ b

i

`

)
m

(`−i)
T (t)m

(i)
X (t) + qk [mk

X(t)](`).

In fact, the main consequence of Panjer’s theory is the following result:

Theorem 5. Let {qn}n∈N be the pmf of a count distribution Y , and {fn}n∈N
denote the pmf of a claim number distribution X whose support is a subset of

the positive integers. Consider the randomly stopped sum T =
∑
n∈SY

Xn, with

Y and the replicas Xn of X independent. Then

P[T = n] = gn =


mY (mX(0)) = mT (f0) n = 0

1

1− a f0

[
n∑
i=1

(
a+ b

i

n

)
gn−ifi

]
+ qkf

∗k
n n ≥ 1

(16)

where f∗kn stands for the k-th iterated convolution of the sequence {fn} with
itself.

(There exists a simple extension for the density when the summands are abso-
lutely continuous, but it is not relevant in the context of branching processes.)

6 Discussion and Conclusions

With the exception of Poisson or of Geometric subordinator — i.e., of a
Panjer(0, µ, 0) or a Panjer(p, 0, 0), respectively, cf. Pestana and Velosa [19]
on the simplicity of these cases when compared to the complexity of others
— we couldn’t obtain any close expressions for the n-fold composition of the
pgf for any other Panjer subordinators. Aside from those two cases, the only
one for which we got more promising results has been — as predictable — the
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Logarithmic(p). Moreover, when the aim is to extend the Fibonacci sequence
using branching randomization, in case we want to remove individuals from the
population after two mating epochs, we have the extra burden of subtracting,
the two rv’s used being dependent.

Happily, compound pgf’s are amenable to compute mean values and vari-
ances, and in what concerns the mean value we have the extra facility that the
mean value of the difference is the difference of the means values, regardless
whether the random variables are dependent or independent. So, it is easy
to follow the process on average, and the relation of the sequence of expected
values to the sequence of Fibonacci numbers simple.

The quantities of interest — extinction probability and expected total size
in the supercritical case, size of the n-th generation, total size of the population
up to the n-th generation — can be dealt with computationally. When the fixed
point method is used to compute roots of some equation F (x) = x, numerical
instabilities are a rule whenever F is too steep, and the sufficient convergence
conditions are not met.
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