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Abstract. In this paper we study the evolution of the information flow associated
with a topological order in networks. The amount of information produced by a
network may be measure by the mutual information rate. This measure and the syn-
chronization interval are expressed in terms of the transversal Lyapunov exponents.
The networks are constructed by successively joining one edge, maintaining the same
number of nodes, and the topological order is described by the monotonicity of the
network topological entropy. The network topological entropy measures the complex-
ity of the network topology and it is expressed by the Perron value of the adjacency
matrix. We conclude that, as larger the network topological entropy, the larger is
the rate with which information is exchanged between nodes of such networks. To
illustrate our ideas we present numerical simulations for several networks with a topo-
logical order established.
Keywords: Mutual information rate, topological entropy, networks.

1 Introduction and motivation

Information theory is an area of mathematics and engineering, concerning the
quantification of information and it benefits of matters like mathematics, statis-
tics, computer science, physics, neurobiology and electrical engineering. Infor-
mation theory and synchronization are directly related in a network. The
entropy is a fundamental measure of information content and the topological
entropy can describe the character of complexity of a network, see for example
[10]. In [6], using the mutual information rate to measure the information flow,
we have proved that the larger the synchronization is, the larger is the rate
with which information is exchanged between nodes in the network. Although
the important growth in the field of complex networks, it is still not clear
which conditions for synchronization implies information transmission and it
is still not known which topology is suitable for the flowing of information.
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Nevertheless, we conclude with this study that, the more complex is a network,
expressed by its topological entropy, the larger is the flux of information.

In this work we study the relationship between the topological order in net-
works and the transmission of information. The topological order in networks is
described by the monotonicity of the network topological entropy. The concept
of the network topological entropy was previously introduced in [10]. However,
there are several concepts of network entropy, see [7]. We will use the one
based on symbolic dynamics. In Sec.2, we present some preliminaries concepts
to be used in the following, such as: fundamental notions of graphs theory,
conditions for complete synchronization, comunication channel and mutual in-
formation rate. Sec.3 is devoted to the study of topological order in networks,
using the definition of the network topological entropy. In Sec.4, numerical sim-
ulations are presented for several networks with a topological order established.
Finally, in Sec.5, we discuss our study and provide some relevant conclusions.

2 Preliminaries concepts

In this section, we introduce some notions and basic results on graphs and
networks theory. Mathematically, networks are described by graphs (directed
or undirected) and the theory of dynamical networks is a combination of graph
theory and nonlinear dynamics. From the point of view of dynamical systems,
we have a global dynamical system emerging from the interactions between the
local dynamics of the individual elements. The tool of graph theory allows us
to analyze the coupling structure between them.

A graph G is an ordered pair G = (V,E), where V is a nonempty set of
N vertices or nodes vi and E is a set of edges or links, eij , that connect two
vertices vi and vj . We will only consider the case of undirected graphs, that
means that the edge eij is the same as the edge eji. If the graph G is not
weighted, the adjacency matrix A = A (G) = [aij ] is defined as follows:

aij =

{
1, if vi and vj are connected
0, if vi and vj are not connected

.

The degree of a node vi is the number of edges incident on it and is denoted
by ki. For more details in graph theory see [4].

Consider a network of N identical chaotic dynamical oscillators, described
by a connected and undirected graph, with no loops and no multiple edges.
In each node the dynamics of the oscillators is defined by ẋi = f(xi), with
f : Rn → Rn and xi ∈ Rn is the state variables of the node i. The state
equations of this network are

ẋi = f(xi) + σ

N∑
j=1

lij xj , with i = 1, 2, ..., N (1)

where σ > 0 is the coupling parameter, L = [lij ] = A − D is the Laplacian
matrix or coupling configuration of the network. One of the most important
subjects under investigation is the network synchronizability. It may be studied
fixing the connection topology and varying the local dynamics or fixing the local
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dynamic and varying the connection topology [5]. In [9] it was establish that
complete synchronization can be achieved provided that all the conditional
Lyapunov exponents are negative. In Sec.4, we use this result to determine the
synchronization interval. The negativity of the conditional Lyapunov exponents
is a necessary condition for the stability of the synchronized state, [3]. It is also
a mathematical expression of the decreasing to zero of the logarithm average
of the distance of the solutions on the transverse manifold to the solutions on
the synchronization manifold.

A communication channel represents a pathway through which information
is exchanged. In this work, a communication channel is considered to be formed
by a transmitter Si and a receiver Sj , where the information about the trans-
mitter can be measured. In a network, each one of the links between them, i.e.,
each one of the edges of the corresponding graph, represents a communication
channel. In [1], it is defined IC(Si, Sj), the mutual information rate (MIR)
between one transmitter Si and one receiver Sj , by

IC(Si, Sj) =

λ‖ − λ⊥ , if λ⊥ > 0

λ‖ , if λ⊥ ≤ 0
, (2)

where λ‖ denotes the positive Lyapunov exponents associated to the synchro-
nization manifold and λ⊥ denotes the positive Lyapunov exponents associated
to the transversal manifold, between Si and Sj . λ‖ represents the information
(entropy production per time unit) produced by the synchronous trajectories
and corresponds to the amount of information transmitted. On the other hand,
λ⊥ represents the information produced by the nonsynchronous trajectories and
corresponds to the information lost in the transmission, the information that
is erroneously retrieved in the receiver. For more details and references see for
example [1] and [2]. In [6], we prove that, as the coupling parameter increases,
the mutual information rate increases to a maximum in the synchronization
interval and then decreases.

3 Topological order in networks

In this section we study a topological order in networks, which are constructed
by successively joining one edge, maintaining the same number of nodes. This
topological order is described by the monotonicity of the network topological
entropy. The introduction of the network topological entropy concept was made
in [10], which requires a strict and long construction, using tools of symbolic
dynamics and algebraic graph theory. However, we present some basic aspects
of this definition. The topological entropy htop(X) of a shift dynamical system
(X,σ) over some finite alphabet A is defined by

htop(X) = lim
n→∞

log Tr (An(X))

n

and htop(X) = 0 if X = ∅, where A(X) is the transition matrix of X, [8].
We remark that the transition matrix A(X) describes the dynamics between
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the nodes of the network, which is represented by a graph G. The Perron-
Frobenius Theorem states that, if the adjacency matrix A 6= 0 is irreducible
and λA is the Perron value of A, then htop(X) = log λA. We calculate the
topological entropy of the associated dynamical system, which is equal to the
logarithm of the growth rate of the number of admissible words, [8]. If we have
a network associated to a graph G, which determine the shift space X, we will
call network topological entropy of G the quantity htop(X), i.e.,

htop(G) = htop(X) = log λA. (3)

The following result establishes a topological order in networks.

Proposition 1. Let G1 and G2 be two undirected graphs, with the same num-
ber of vertices N , and G1 be a not complete graph. If the graph G2 is obtained
from the graph G1 by joining an edge, then htop(G2) > htop(G1).

Proof. Let A = [aij ] and B = [bij ] be the adjacency matrices of the graphs G1

and G2, respectively. If the graph G2 is obtained from the graph G1 by joining
an edge, then the adjacency matrix B is obtained from the adjacency matrix
A by replacing some entry aij = 0 by bij = 1. As the graphs G1 and G2 are
not directed, then the matrices A and B are symmetric, and bji = 1. Thus,
the matrix B is equal to the matrix A plus some matrix with non negative
entries. For any power n, we have Bn = An + C, for some matrix C whose
entries are all non negative. As Tr(C) ≥ 0 and Tr(Bn) = Tr(An) + Tr(C),

then Tr(Bn) > Tr(An). Consequently, we obtain log Tr(Bn)
n > log Tr(An)

n , for
all integers n. From the definition of network topological entropy, Eq.(3), we
have htop(G2) > htop(G1).

4 Numerical simulations

In this section we will consider, as an example, a network with N = 6 nodes,
having in each node the same skew-tent map, f : [0, 1]→ [0, 1], defined by

f(x) =


x
a , if 0 ≤ x ≤ a

1−x
1−a , if a < x ≤ 1

, (4)

with 0.5 ≤ a < 1, see [6]. See Fig.1 where we present some examples of these
networks. We start with a network of 7 edges and without the edges e12, e35,
e56, e34, e46, e25, e36, e24 and each time we add the last edge of this list,
we evaluate the eigenvalues of the Jacobian matrix, the Lyapunov exponents,
the region where all transversal Lyapunov exponents are negatives, the syn-
chronization interval and the mutual information rate for all communication
channels of these networks. In order to compare the results, as we add one
edge, we consider for all studied cases the same value a = 0.9 of the skew-tent
map parameter. For this network, the region where all transversal Lyapunov
exponents are negatives do not intersect the line a = 0.9. So, for this value of
a there is no synchronization interval, see 1) of Fig.2 and we do not evaluate
the mutual information rate in this case.
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Fig. 1. Construction of networks by successively joining one edge, with 8, 10, 14 and 15 edges
and N = 6 nodes.

We present the details for the network with 8 edges shown in 1) of Fig.1.
The adjacency matrix A and the Laplacian matrix L of this network are:

A =


0 0 1 1 1 1
0 0 1 1 0 1
1 1 0 0 0 0
1 1 0 0 1 0
1 0 0 1 0 0
1 1 0 0 0 0

 and L = A−D =


−4 0 1 1 1 1
0 −3 1 1 0 1
1 1 −2 0 0 0
1 1 0 −3 1 0
1 0 0 1 −2 0
1 1 0 0 0 −2

 ,

where D is the diagonal matrix with entries dii = ki, beeing ki the degree of
each node i. This network is defined by the following system,

ẋ1 = f(x1) + σ(−4x1 + x3 + x4 + x5 + x6)
ẋ2 = f(x2) + σ(−3x2 + x3 + x4 + x6)
ẋ3 = f(x3) + σ(x1 + x2 − 2x3)
ẋ4 = f(x4) + σ(x1 + x2 − 3x4 + x5)
ẋ5 = f(x5) + σ(x1 + x4 − 2x5)
ẋ6 = f(x6) + σ(x1 + x2 − 2x6)

,

where σ is the coupling parameter. The Jacobian matrix is given by,

J =


c− 4σ 0 σ σ σ σ

0 c− 3σ σ σ 0 σ
σ σ c− 2σ 0 0 0
σ σ 0 c− 3σ σ 0
σ 0 0 σ c− 2σ 0
σ σ 0 0 0 c− 2σ

 ,

being c = c(x) the slope of f , Eq.(4), given by c(x) = 1
a , if x ≤ a and c(x) =

− 1
1−a if x > a. The eigenvalues of the Jacobian are µ1 = c, µ2 = c − 4σ,

µ3 = c − 3σ, µ4 = c − 2σ, µ5 = c − 7
2σ −

√
17
2 and µ6 = c − 7

2σ −
√
17
2 . The

first eigenvector is (1, 1, 1, 1, 1, 1) and it corresponds to the parallel Lyapunov
exponent λ‖. The others eigenvectors correspond to the transversal Lyapunov
exponents λ⊥i , with i = 2, 3, 4, 5, 6. So, the parallel Lyapunov exponent is

λ‖ =

∫
ln |µ1| =

∫ a

0

ln
1

a
+

∫ 1

a

ln

∣∣∣∣ −1

1− a

∣∣∣∣ = −a ln a− (1− a) ln(1− a) (5)
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Fig. 2. Regions where the transversal Lyapunov exponents are negatives. The synchronization
region is the intersection of these regions. In the vertical axis is the coupling parameter σ and in the
horizontal axis is the tent map parameter a. In 1) is the network with 7 edges, in 2) with 8 edges,
and in 3) with 9 edges. The image in 1) shows that for a = 0.9 there is no synchronization interval
because the intersection of the regions where all transversal Lyapunov exponents are negatives
does not occur for a = 0.9.
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Fig. 3. ICi
for the network with 8 edges in 1) of Fig.1 and with 10 edges in 2) of Fig.1.

and the transversal Lyapunov exponents are

λ⊥i
= a ln

∣∣∣∣1a − νiσ
∣∣∣∣+ (1− a) ln

∣∣∣∣− 1

1− a
− νiσ

∣∣∣∣ , with i = 2, 3, 4, 5, 6

where ν2 = 4, ν3 = 3, ν4 = 2, ν5 = 7
2σ +

√
17
2 and ν6 = 7

2σ −
√
17
2 . In order to

have synchronization, all transversal Lyapunov exponents must be negatives,
see 2) in Fig.2. In this figure, each color corresponds to a region where one of
the transversal Lyapunov exponents is negative. For example, if a = 0.9, then
the synchronization interval is ]0.236, 0.336[, where all the transversal Lyapunov
exponents λ⊥i are negative. See also 3) in Fig.2 for the network with 9 edges.
To evaluate the mutual information rate (MIR), according to Eq.(2), for each
λ⊥i

we obtain the interval ]ai, bi[ where λ⊥i
< 0, thus

ICi
=


−a ln a− (1− a) ln(1− a)− a ln

∣∣ 1
a − νiσ

∣∣− (1− a) ln
∣∣∣− 1

1−a − νiσ
∣∣∣ ,

if σ < ai or σ > bi
−a ln a− (1− a) ln(1− a), if ai < σ < bi

with a = 0.9 and i = 2, 3, 4, 5, 6. See in 1) of Fig.3 the plots of these ICi .
The MIR attains its maximum 0.325..., in an interval of lenght 1.028 and the
network topological entropy, given by Eq.(3), is log λA = 1.02835....
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The second case that we study in detail is the network with 10 edges and
without the edges e12, e35, e56, e34, e46, see 2) of Fig.1. The adjacency matrix
A and the Laplacian matrix L are given by,

A =


0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 1 0 0 0

 and L = A−D =


−4 0 1 1 1 1
0 −4 1 1 1 1
1 1 −3 0 0 1
1 1 0 −3 1 0
1 1 0 1 −3 0
1 1 1 0 0 −3

 .

This network is defined by the system,

ẋ1 = f(x1) + σ(−4x1 + x3 + x4 + x5 + x6)
ẋ2 = f(x2) + σ(−4x2 + x3 + x4 + +x5 + x6)
ẋ3 = f(x3) + σ(x1 + x2 − 3x3 + x4)
ẋ4 = f(x4) + σ(x1 + x2 − 3x4 + x5)
ẋ5 = f(x5) + σ(x1 + x2 + x4 − 3x5)
ẋ6 = f(x6) + σ(x1 + x2 + x3 − 3x6)

,

and the Jacobian matrix is given by

J =


c− 4σ 0 σ σ σ σ

0 c− 4σ σ σ σ σ
σ σ c− 3σ σ 0 0
σ σ σ c− 3σ σ 0
σ σ 0 σ c− 3σ 0
σ σ σ 0 0 c− 3σ

 .

The eigenvalues of the Jacobian matrix are µ1 = c, µ2 = c − 6σ, µ3 = µ4 =
µ5 = c−4σ and µ5 = c−2σ. Thus, the parallel Lyapunov exponent is identical
to the previous case, Eq.(5), and the transversal Lyapunov exponents are

λ⊥i = a ln

∣∣∣∣1a − νiσ
∣∣∣∣+ (1− a) ln

∣∣∣∣− 1

1− a
− νiσ

∣∣∣∣ , with i = 2, 3, 4

where ν2 = 6, ν3 = 4 and ν4 = 2. See 1) in Fig.4 the regions where these
transversal Lyapunov exponents are negatives. For a = 0.9, this network
synchronizes if σ ∈]0.170, 0.312[. We compute the ICi like in the previous
case and we plot its graphics in 2) of Fig.3. The MIR attains its maximum
0.325..., in an interval of lenght 1.216 and the network topological entropy is
log λA = 1.21559.... Figs.4, 5 and Table 1 contain information similar to the
other cases analyzed in this topological order.

5 Conclusions and discussion

We started our simulations, considering the network with 8 edges and without
the edges e12, e35, e56, e34, e46, e25, e36 and in each step we add the last edge
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Fig. 4. Regions where the transversal Lyapunov exponents are negatives. The synchronization
region is the intersection of these regions. In 1) is the network with 10 edges, in 2) with 11 edges,
and in 3) with 12 edges. For the same value of a, the amplitude of the synchronization interval
increases.
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Fig. 5. Regions where the transversal Lyapunov exponents are negatives. The synchronization
region is the intersection of these regions. In 1) is the network with 13 edges, in 2) with 14
edges and in 3) with 15 edges (complete network). For the same value of a, the amplitude of the
synchronization interval increases.

Edges µi = c− νiσ (i = 2, 3, 4, 5, 6) Sync. interv. Ampl. log λA

8 ν2 = 4, ν3 = 3, ν4 = 2, ν5 = 7+
√
17

2
, ν6 = 7−

√
17

2
]0.236,0.336[ 0.100 1.028

9 ν2 = ν3 = 4, ν4 = 3, ν5 = 7+
√
17

2
, ν6 = 7−

√
17

2
]0.236,0.336[ 0.100 1.127

10 ν2 = 6, ν3 = ν4 = ν5 = 4, ν6 = 2 ]0.170,0.312[ 0.142 1.216

11 ν2 = 6, ν3 = ν4 = 4, ν5 = 4 +
√

2, ν6 = 4−
√

2 ]0.131,0.312[ 0.181 1.312

12 ν2 = ν3 = 6, ν4 = 5, ν5 = 4, ν6 = 3 ]0.113,0.312[ 0.199 1.403

13 ν2 = ν3 = ν4 = 6 ν5 = ν6 = 4 ]0.085,0.312[ 0.227 1.475

14 ν2 = ν3 = ν4 = ν5 = 6 ν6 = 4 ]0.085,0.312[ 0.227 1.548

15 ν2 = ν3 = ν4 = ν5 = ν6 = 6 ]0.057,0.312[ 0.255 1.609

Table 1. Jacobian eigenvalues, µi, for (i = 2, 3, 4, 5, 6), which correspond to the transversal
Lyapunov exponents, synchronization interval, its amplitude, network topological entropy and the
number of edges from 8 to 15 (complete network).

of this list. In each step of this construction, we obtain the Laplacian matrix
and compute the eigenvalues µi (i = 1, 2, 3, 4, 5, 6) of the Jacobian matrix,
the parallel and transversal Lyapunov exponents, the synchronization interval,
the network topological entropy and the ICi for the networks with 8, 9, 10,
11, 12, 13, 14 and 15 edges (complete network). For all these cases µ1 = c
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Fig. 6. The network topological entropy increases as the the number of edges of the network
increases.

and this eigenvalue correspond to the synchronization manifold. The others
µi correspond to the transversal Lyapunov exponents and are presented in
Table 1. In this table is also presented the synchronization interval and the
network topological entropy, for all these cases. See in Figs.2, 4 and 5 the
synchronization regions, in terms of the skew-tent map parameter a and of
the coupling parameter σ. In Fig.6 we may see that the network topological
entropy increases as we add one edge sucessively to the network, which confirms
Proposition 1.

From the numerical simulations shown in figures and Table 1, we conclude
that, with the topological order established, the interval where the mutual
information rate attains its maximum, the synchronization interval, increases
its amplitude. Thus, we claim that:

Conjecture: As larger the network topological entropy, the larger is the
rate with which information is exchanged between nodes in the network.
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