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Abstract: Chaos cryptography is implemented by torus automorphisms with strictly 

positive entropy production. For any given entropy production 0h >  we explicitly 

construct integer valued automorphisms with entropy ( )S ≥h h . We identify 

compatibility conditions between the values of the entropy production and the lengths of 

the messages in terms of the grid size and we propose constructive ways to encrypt 

messages of arbitrary length in terms of torus automorphisms with any given desired 

entropy production. We moreover prove that the restrictions of chaotic maps with the 

same entropy have the same period for a fixed grid size. 
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1. Introduction 
Chaos cryptography was proposed by Shannon in his classic 1949 mathematical 

paper on Cryptography where used chaotic maps as models - mechanisms for 

symmetric key encryption. Of course Shannon did not employ the term Chaos 

which emerged in the 1970s. This remarkable intuition was based on the 

paradigm of the Baker’s map introduced by Hopf in 1934 as a simple 

deterministic mixing model with statistical regularity. Shannon observed that 

using chaotic maps, encryption is achieved via successive mixing of the initial 

information which is uniformly “spread” all over the available state space. In 

this way it is becoming exponentially hard to recover the initial message if the 

reverse transformation is not known. Baker’s map is the simplest example of 

chaotic Torus Automorphisms with constant Entropy production equal to one bit 

at every step. The Entropy production theory of Torus Automorphisms and 

general Chaotic maps was developed later by Kolmogorov and his group 

[Arnold and Avez, 1968; Katok ea, 1995; Lasota ea, 1994], following 

Shannon’s earlier foundation of Information Theory in 1948. Baker’s map has 

also served as a toy model for understanding the problem of Irreversibility in 

Statistical Mechanics [Prigogine, 1980]. Chaos cryptography with 2-

dimensional maps deal with image encryption [Guan D. ea, 2005; Xiao G. ea , 

2009] and text encryption [Kocarev ea, 2003; Kocarev ea, 2004; Kocarev L. and  

Lian S., 2011;Li S., 2003]. We have proposed a new implementation method for 



G. Makris, I. Antoniou 572 

Chaos Cryptography based on Chaotic torus automorphisms, applicable for both 

image and text encryption simultaneously [Makris G, Antoniou I, 2012a] and 

designed torus automorphisms with desired entropy production [Makris G, 

Antoniou I, 2012b]. Part of these results is summatized in section 1. 

As the grid discretizations of chaotic Torus automorphisms are periodic, for 

effective implementation we have to examine the conditions for reliable 

cryptography implementation. The objectives of this work are: a) to examine the 

dependence of the period on the entropy production and on the grid size 

(Section 2), b) to provide conditions for admissible grid discretizations (Section 

3) and c) to provide algorithms for the construction of integer torus 

automorphims with desired entropy production  (Appendix A) and for adapting 

the image size to the appropriate grid size (Appendix B) for customized 

implementation of chaotic cryptography).  

 

The automorphisms of the 2-torus [ ) [ )0,1 0,1Y = ×  are defined by the formula: 

( )1

1

: :  1 , 
n n

n n

x x
S Y Y A mod n

y y

+

+

   
→ = ∈   

   
N (1) 

Where
a b

A
c d

 
=  
 

is a real invertible matrix with inverse: 

1
d b1

A
c aad bc

− − 
=  − −

 

Chaotic Torus automorphisms (1) have one eigenvalue greater than 1, according 

Pesin’s 1977 Formula. 

Lemma:  

1) The class of chaotic automorphisms (1) with ad bc 1− =  consists of the 

matrices: 

a b

, , {0}, 21
d

A a b d aad

b

 
 = ∈ ∈ − > −− 
 

R  R      (2) 

 

2) The entropy production of the Chaotic automorphisms (2) is: 

( ) ( ) ( )
2 1 2

2

2

2
a d a d 4

log log log
( ) ( ) 4

2 2

tr A tr A
λ

+ + + − + −
= ==h , 

, , 2a b d a∈ ∈ > −R  R   (or ( ) 2tr A > )      (3) 

 

3) The chaotic automorphisms (2) are expressed in terms of the entropy 

production as a parameter h by the formula: 

( )
a b

 , a , {0}, 0a 2 2 a 1
2 2 a

A b

b

−

−

 
 = ∈ ∈ − >⋅ + − − + −  

h h

h h
hR  R (4) 
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4) For the class of chaotic automorphisms Α with one eigenvalue greater 

than 1 and ad bc 1− = −  we have the corresponding formulas: 

a b

, , {0}, 1
d

A a b d aad

b

 
 = ∈ ∈ − > −+ 
 

R  R      (5) 

 

           
( ) ( ) ( )

2 1 2

2

2

2
a d a d 4

log log log
( ) ( ) 4

2 2

tr A tr A
λ

+ + + +
= =

+ +
=h , 

, ,a b d a∈ ∈ > −R  R   (or ( ) 0tr A > )      (6) 

 

( )
a b

 , a , {0}, 0a 2 2 a 1
2 2 a

A b

b

−

−

 
 = ∈ ∈ − >⋅ − − + − −  

h h

h h
hR  R (7) 

Formulas (2),(3),(4) are proven in [Makris G, Antoniou I, 2012b]. The 

corresponding formulas for the case ad bc 1− = − are obtained in a similar way. 

From formulas (3),(6) we see that  

Corollary 

Two Chaotic Torus Automorphisms have the same Entropy Production (are 

isomorphic), if and only if they have the same trace 

 

2. Entropy production and the period of the discretization 

restrictions of integer Torus Automorphisms 
The implementation of cryptographic algorithms requires discretization of the 

chaotic maps onto the selected N N×  grid. In order to preserve the grid 

structure we shall consider torus automorphisms with integer matrix elements. 
Given a desired entropy production value not less than h we may construct 

integer torus automorphisms with entropy production h from formulas (4),(7) 

using the algorithms presented in appendix A.  

The coordinates of pixels are elements of the NxN lattices 
N N
×Ά Ά . The 

restriction of any integer torus automorphism to 
N N
×Ά Ά (mod N): 

( ) ( )
'

mod mod
'

x x a b x
A N N

y y c d y

       
= =       

       
 (8) 

is a periodic transformation, called the NxN discretization automorphism of (1).  

The period of the discretization automorphisms (8) is the minimal number T  

which satisfies the formula: 

( ) 2

1 0
mod

0 1

T
a b

N
c d

   
= Ι =   

   
(9) 

 

Theorem 1: All discretization automorphisms (8) with the same trace have the 

same period T  which depends only on the size N of the grid.  
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Proof: 

First we shall show that the discretization automorphisms (8) of isospectral 

matrices have the same period. It is enough to show that the matrices A (9) and  

1

2

0

0

λ
λ

 
∆ =  

 
(10) 

define discretization automorphisms (8)  with the same period. 

We have: 
1A B B−= ⋅∆ ⋅  

Where B is a diagonalization transformation of A.  

If T is the period of (8), from (9) and (10) we have: 

( )1 1
T

T T
A B B B B

− −= ⋅∆ ⋅ = ⋅∆ ⋅  

and:  

( ) ( )1 1

2

1 00
mod mod

0 10

T T

T

a b
N B B N

c d

λ
λ

−
     

= =           
 

Therefore:  

( )1

2

1 00
mod

0 10

T

T
N

λ
λ

   
=   
  

 

Therefore the discretizations (8) of ∆ and A have the same period T . From the 

eigenvalue formulas (3) and (6), we see that the eigenvalues 
1 2
,λ λ  depend only 

on the trace of A. Therefore any two matrices with the same trace define 

discretizations (8) with the same period. ■ 

 

3. Entropy Production and Grid size  
 

We observe that torus automorphisms with different entropy production may 

have identical discretizations (8). For example, applying formula (6) we see that 

the torus automorphisms with matrices 1

2 1

4093 2047
A

 
=  
 

and 

2

2 1

93 47
A

 
=  
 

have entropy productions
1

11.0007h =  

and
2

5.6141h = correspondingly. However their discretizations (8) to the grid 

100 100× are identical:  

2 1 2 1
mod100 mod100

4093 2047 93 47

   
≡   

   
. 

The same is true for the grids 200 200× , 500 500× , 1000 1000× and others. 

This is an undesirable fact because only equivalent chaotic torus automorphisms 

should have identical grid discretization (8). We found that this requirement is 

true only for certain values of the entropy production h and grid size N . The 

result is the following: 
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Theorem 2: An necessary and sufficient condition for   one to one 

correspondence between torus automorphisms and their grid discretizations (8) 

is:  { }, ,max ,N a b c d> (11) 

Equivalently in terms of entropy production, using (3) and (6) we have the 

conditions: 

( )a 2 2 a 1
, ,x 2 ,ma 2

h h
N a b a

b

−

−
⋅ + − −  

> 
  

− +
h h

for det( ) 1A =  (12) 

( )a 2 2 a 1
, ,x 2 ,ma 2

h h
N a b a

b

−

−
⋅ − − +  

> 
  

− −
h h

 for det( ) 1A = −  (13) 

Prof:  

( )
( ) ( )
( ) ( )

( )

( )

mod mod
mod mod

mod mod

mod
b

c d

a N b Na b x x
N N

c N d Nc d y y

x
N

y

αυ υ

υ υ

      
= =      

      

   
=    

  

 

As the remainders  , , ,
b c dαυ υ υ υ are always not greater than a,b,c,d 

correspondingly, we have: 
b

d

c d

a b
tr a d tr

c d

α
α

υ υ
υ υ

υ υ
  

= + ≥ + =   
   

 

Therefore, from (3) and (6) we have: 
b

c d

a b
h h

c d

αυ υ
υ υ
  

≥   
   

 

b

c d

a b
h h

c d

αυ υ
υ υ
  

=   
   

 if and only if: a N< and b N< and c N< and d N< , 

from which follows the desired result. ■ 

 

The natural question now arises what are the possible values of entropy 

production for automorphisms satisfying (11) 

Without significant loss of generality we consider the simpler class of integer 

torus automorphisms with 1b = . Formulas (12) and (13) are written : 

 

( ) ( )2

2log 4 1 , 0h a N a N a N < + + + − − < <  
, det( ) 1A =  (14) 

 

( ) ( )2

2log 4 1 , 0h a N a N a N < + + + + − < <  
, det( ) 1A = −  (15) 

 

Therefore given the grid size N  we know the maximal entropy production from  

(14),(15) for automorphisms with b=1 and conversely given a desired entropy 
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production value we know the minimal grid size from (12),(13). The relation 

between entropy production and grid size is shown in figure 1. We shall call the 

discretizations (8) with grid size N N× admissible discretizations if and only if 

the conditions (12) , (13) hold. 

 

 

Entropy Production and Grid Size, 

det( ) 1A =  

Entropy Production and Grid Size, 

det( ) 1A = −  
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Figure 1: Entropy Production and Grid Size 

In case the grid N N× for  admissible discretization (8) of the constructed 

torus automorphisms is larger than the message size n m×  we may  enlarge 

and adapt the message size to the grid size using the algorithm presented in 

appendix B. 

 

5. Conclusions 
After extending our previous results [Makris G, Antoniou I, 2012b] on the 

entropy production on torus automorphisms (Lemma and Corollary), we show 

that the period of grid discretizations of chaotic automorphisms depends only on 

the entropy production and on the grid size (Theorem 1). In order to avoid the 

undesirable fact that torus automorphisms with different entropy production 

may have the same discretization, we provide a necessary and sufficient 

condition of admissible grid discretizations (Theorem 2). For customized 

implementation of chaotic cryptography, we provide algorithms for the 

construction of integer torus automorphims with desired entropy production  

(Appendix A) and for adapting the image size to the appropriate grid size 

(Appendix B). These results are necessary for implementation of chaotic 

cryptographic algorithms of desired entropy production. Based on Theorem 2 

and Appendix B we can automatically adapt the message size to admissible 

discretization for effective cryptography.  
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Appendix A: Construction of integer torus automorphisms 

with entropy production not less than any desired positive real 

number  

 
Torus automorphisms have been applied to NxN grids and the periods has been 

related to the grid size N [Vivaldi, 1989; Dyson FJ and  Falk H, 1992; Akritas 

ea, 2001;Antoniou ea, 1997; Xiao ea, 2009]. According to formula (2) we 

should have 
a 1d

b

−
∈Z for any integer values a,b,d. , ie. : ( )a   1d mod b =   

For any given entropy production 0h > we construct integer matrixes A with 

entropy ( )A ≥h h  according to the following algorithm.  

 

 

Algorithm 1. Construction of integer matrices A with ( )det 1A =   

Step 0: inputs: (0, ) , a,∈ ∞ ∈h  Z b  

Step 1: Set ( ) 2 2x tr A
− = = +    

h h
 , z    is the ceiling of z 

Step 2: Set d=x-a 

Step 3: if [ d>2-a and ( b=1 or (a )  1d mod b = ) ] goto Step 9 

Step 4: if [ a  0 and   0mod b b mod a≠ ≠ ] goto Step 7 

Step 5: Set x=x+1 and d=x-a 

Step 6: goto Step 3 

Step 7: Set a=a+1 and d=x-a 

Step 8: goto Step 3  

Step 9: return 

a b

A 1
d

ad

b

 
 = − 
 

  

Step 10: return λ1(A)=
( ) ( )2
a d a d 4

2

+ + + −
 

Step 11: return ( ) ( )2 1
logA Aλ=h  
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Input Output 

h  a b  

a b

A 1
d

ad

b

 
 = − 
 

  λ1(A) ( )h A  

1.2 1 1  
1 1

A
1 2

 
=  
 

  2.6180 1.3885 

1.2 2 3  
2 3

A
1 2

 
=  
 

  3.7321 1.9000 

3.5 1 1 
1 1

A
10 11

 
=  
 

 11.9161 3.5748 

3.5 5 1 
5 1

A
34 7

 
=  
 

 11.9161 3.5748 

3.5 5 3 
5 3

A
13 8

 
=  
 

 11.9161 3.5748 

11 2 1 
2 1

A
4093 2047

 
=  
 

 2049 11.0007 

Table 1: Examples of Algorithm 1 

According to formula (4) we should have 
a 1d

b

+
∈Z for any integer values 

a,b,d. , ie. : ( ) ( )a 1   0 a   1d mod b d mod b b+ = ⇒ = −   

Algorithm 2. Construction of integer matrices A with ( )det 1A = −   

Step 0: inputs: (0, ) , a,∈ ∞ ∈h  Z b  

Step 1: Set ( ) 2 2x tr A
− = = −   

h h
 , z    is the ceiling of z 

Step 2: Set d=x-a 

Step 3: if [ d>-a and ( b=1 or (a )  1d mod b b= − ) ] goto Step 9 

Step 4: if [ a  0 and   0mod b b mod a≠ ≠ ] goto Step 7 

Step 5: Set x=x+1 and d=x-a 

Step 6: goto Step 3 

Step 7: Set a=a+1 and d=x-a 

Step 8: goto Step 3  

Step 9: return a b

A 1
d

a d

b

 
 = + 
 

  

Step 10: return λ1(A)= ( ) ( )2
a d a d 4

2

+ + + +  

Step 11: return ( ) ( )2 1
logA Aλ=h  
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Input Output 

h  a b  

a b

A 1
d

ad

b

 
 = + 
 

  λ1(A) ( )h A  

1.2 1 1 
1 1

A
2 1

 
=  
 

 2.4142 1.2716 

1.2 2 3 
2 3

A
1 1

 
=  
 

 3.3028 1.7237 

3.5 1 1 
1 1

A
12 11

 
=  
 

 12.0828 3.5949 

3.5 5 1 
5 1

A
36 7

 
=  
 

 12.0828 3.5949 

3.5 5 3 
5 3

A
12 7

 
=  
 

 12.0828 3.5949 

11 2 1 
2 1

A
4093 2046

 
=  
 

  2048 11.0000 

Table 2: Examples of Algorithm 2 

 

Appendix B: Algorithm to Enlarge image size from ( )n m×  to 

( )N N× : 

Step 0: inputs: ( ), ,image N c , N: new image size, c: color of new pixels   

Step 1: calculate ( ),n m =image size 

Step 2: 
h

W N n= −  

Step 3: Create an new blank image1 with size  
2

h
W

m
 × 
 

and color c to every 

pixel. 

Step 4: Create an new image2 with vertical quote of three images: 

1

2

1

image

image image

image

 
 =  
 
 

 . Image2 size= ( )N m×  

Step 5: 
w

W N m= −  

Step 6: Create a new blank image3 with size 
2

w
W

N
 × 
 

and color c to every 

pixel. 
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Step 7: Create a new_image with horizontal quote of three images : 

( )_ 3 2 3new image image image image=  . new_mage size= ( )N N×  

 

 

Image 

(342 x 454) 
Image1 

( 79 x 454) 
Image2 

(500 x 454) 
Image3 

(500 x 23) 

 

 

  

Inputs 
New_image 

(500 x 500) 
Output 

Image 

N=500 

c=white 

 

Calculations  

158
h

W N n == −  

46
w

W N m= − =   

New_image 

 

The advantage of adding pixels in an image is to keep the original information. 

 

 


