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Abstract. There are many cases when we refer to chaos and chaotic and complex
systems to describe the comportment of some natural phenomena. In this context,
we shall discuss, in this paper, some aspects which appear in the study of various
systems. Firstly, we shall refer to the Brownian transition probabilities in connection
with the conditions assumed on the transition probabilities; and then the standard
Brownian motion is considered in connection with the ”passage times” which are the
most important Markov times.
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1 Introduction

Starting from the observation that many a time we refer to chaos and chaotic
and complex systems to describe the comportment of some natural pheno-mena,
it is very useful, from a mathematical point of view, to talk about a passing
from chaotic and complex systems to Brownian motion. In this way we can refer
to the Brownian motion which is a more realistic model of such phenomena.

Its fascinating properties and its far-reaching extension of the simplest nor-
mal limit theorems to functional limit distributions acted, and continue to act,
as a catalyst in random systems analysis. As some authors remarks too, the
Brownian motion reflects a perfection that seems closer to a law of nature than
to a human invention.

In Physics, the ceaseless and extremely erratic dance of microscopic parti-
cles suspended in a liquid or gas, is called Brownian motion. It was system-
atically investigated by Robert Brown (1828, 1829), an English botanist, from
movement of grains of pollen in water to a drop of water in oil. He was not
the first to mention this phenomenon and had many predecessors but Brown’s
investigation brought it to the attention of the scientific community.

Brownian motion was frequently explained as due to the fact that particles
were alive. It is only in 1905 that kinetic molecular theory led Einstein to
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the first mathematical model of Brownian motion. He began by deriving its
possible existence and then only learned that it had been observed.

A completely different origin of mathematical Brownian motion is a game
theoretic model for fluctuations of stock prices due to L. Bachélier from 1900.
In his doctoral thesis, Théorie de la spéculation, Ann. Sci. Ecole Norm. Sup.,
17, 1900, 21-86, he hinted that it could apply to physical Brownian motion.
Therein, and in his subsequent works, he used the heat equation and, proceed-
ing by analogy with heat propagation he found, albeit formally, distributions of
various functionals of mathematical Brownian motion. Heat equations and re-
lated parabolic type equations were used rigorously by Kolmogorov, Petrovsky,
Khintchine.

But Bachélier was unable to obtain a clear picture of the Brownian motion
and his ideas were unappreciated at the time. This because a precise definition
of the Brownian motion involves a measure on the path space, and it was not
until 1908-1909 when E. Borel published his classical me-moir on Bernoulli
trials: Les probabilités dénombrables et leurs applications arithmétique, Rend.
Circ. Math. Palermo 27, 247-271, 1909. But as soon as the ideas of Borel,
Lebesgue and Daniell appeared, it was possible to put the Brownian motion on
a firm mathematical foundation. And this was achived in 1923 by N. Wiener,
in his work: Differential space, J. Math. Phys. 2, 131-174, 1923.

Many researchers were fascinated by the great beauty of the theory of Brow-
nian motion and many results have been obtained in the last decades. As for
example, among other things, in Diffusion processes and their sample paths by
K. It6 and H.P. McKean, Jr., in Theory and applications of stochastic differen-
tial equations by Z. Schuss, or in Stochastic approzimation by M.T. Wasan as
in Stochastic calculus and its applications to some problems in finance by J.M.
Steele.

In fact, the construction of the Brownian motion as a limit of a rescaled
random walk can be generalized to a class of Markov chains. In this context, at
the 4" CMSIM international Conference, we discussed some aspects relating
to the approximation in the study of Markov processes and Brownian motion;
also, we referred to the Markov property from a perspective of K. Ito.

It6’s integral and other details and related topics in stochastic calculus
and applications in random systems analysis are developed among other by B.
@ksendal and A. Sulem, J.M. Steele, P. Malliavin, P. Protter, D.W. Stroock.

2 In short about transition probabilities

In some previous papers we have dicussed on Markov processes in a vision of
K. It6 and we have emphasized the aspects regarding to the Markov pro-perty.
In this context a fundamental concept is that of transition probabilities which
will be considered, in short, below.

Let S be a state space and consider a particle which moves in S. Also,
suppose that the particle starting at x at the present moment will move into
the set A C S with probability p;(z, A) after ¢ units of time, “irrespectively of
its past motion”, that is to say, this motion is considered to have a Markovian
character.



Chaotic Modeling and Simulation (CMSIM) 4: 345-355, 2014 347

The transition probabilities of this motion are {p;(x, A)}i» 4 and is consid-
ered that the time parameter ¢t € T' = [0, +-00).

The state space S is assumed to be a compact Hausdorff space with a count-
able open base, so that it is homeomorphic with a compact separable metric
space by the Urysohn’s metrization theorem. The o-field generated by the open
space (the topological o-field on S) is denoted by K (.5). Therefore, a Borel set
is a set in K ().

It will be assumed that the transition probabilities {p:(z, A) }rerves,4e Kk (5)
satisfy the following conditions:

(1) for ¢t and A fixed,

a) the transition probabilities are Borel measurable in z;
b) pi(z, A) is a probability measure in A;
(2) po(x, A) = 0,(A) (i.e. the d-measure concentrated at x);

(3) pe(z,-) %k pi(xo, ) as © — xg for any ¢ fixed, that is

Tr—x0

i [ (o dy) = [ oz, dy)
for all continuous functions f on S;

(4) pe(x,U(x)) — 1 as t N\, 0, for any neighborhood U (x) of «;
(5) the Chapman-Kolmogorov equation holds:

mMum=me@mmm.

It is interesting to observe that, if we define,

( d ) 1 _(yf§)2 d i R
x, = T in
pi(00, A) = 0o A.

then, the conditions (1) — (5) above are satisfied for Brownian transition prob-
abilities.

Let now counsider C' = C(5) to be the space of all continuous functions (it
is a separable Banach space with the supremum norm). Then, the transition
operators can be defined in a similar manner.

Definition 21 The operators p;, defined by

(mN@=Lm@@ﬁ@,f€C

are called "transition operators”.

And the conditions for the transition probabilities can be adapted to the
transition operators.
Now the Markov process can be defined as follows
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Definition 22 A Markov process is a system of stochastic processes
{Xt(LU),t S T,w S (Q, K, Pa)}a637

that is for each a € S, {X:}ies is a stochastic process defined on the probability
space (2, K, P,).

The transition probabilities of a Markov process will be denoted by {p(t, a, B) }.
Now let us denote by { H;} the transition semigroup and let R, be the resolvent
operator of {H;}.

The next results shows that p(¢,a, B), H; and R, can be expressed in terms
of the process as follows:

Theorem 21 Let f be a function in C(S). Then

1. p(t,a, B) P, (Xt 6 B)
2. For E fQ one has Hyf(a) = Eo(f(Xy)).
3. Rof(a (fO _D‘tf Xy dt)

Proof. One can observe that 1. and 2. follow immediately.
To prove 3., we will use the following equality:

Rof(a) = /0 " et H, fa)dt = /0 B (F(H))dr.

Since f(X:(w)) is right continuous in ¢ for w fixed, and measurable in w for
t fixed, it is therefore measurable in the pair (¢,w). Thus, we can use Fubini’s
theorem and therefore we obtain

Ruf(a) = Ea ( /O et f(Xt)dt> ,

which proves 3.

3 Elements of stochastic differential equations

To describe the motion of a particle driven by a white noise type of force (due
to the collision with the smaller molecules of the fluid) the Langevin equation
dv(t)

dt

= —Bv(t) +1(t) (1)

is used, where f(t) is the white noise term. Its solution is the following

¢
y(t) = yoe Pt + efﬁt/o e Pt (s)ds. (2)

If we denote by w(t) the Brownian motion, then it is given by
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d
so that f(s) = a :;V(S) But w(t) is nowhere differentiable, such that f(s) is
s
not a function. Therefore, the solution (2), of Langevin’s equation, is not a
well-defined function. This difficulty can be overcome, in the simple case, as
follows. Integrating (2) by parts, and using (3), it results

t

y(t) = yoe 7' + qw(t) — ﬁq/o e P9 w(s)ds. (4)

But all functions in (4) are well defined and continuous, such that the solution
(3) can be interpreted by giving it the meaning of (4). Now, such a procedure
can be generalized in the following way. Let us given two functions f(¢) and
g(t) that are considered to be defined for a <t < b. For any partition P : a <
to <t <---<t,, we denote

Sp =Y f&)lg(t) — g(ti-1)),
i=1

where t;_1 < & <t;. If a limit exists

lim Sp:_[

|P|—0

where |P| = maxi<;<n(t; — ti—1), then it is said that I is the Stieltjes integral
of f(t) with respect to g(t). It is denoted

b
1= [ fvdg(o)
Now the stochastic differential equation

dx(t = a(z(t), t)dt + b(z(t), t)dw(t)
z(0) = xo (5)

is defined by the It6 integral equation

x(t) :xO—I—/O a(x(s),s)ds—l—/o b(x(s), s)dw(s). (6)

The simplest example of a stochastic differential equation is the following equa-
tion

dz(t) = a(t)dt + b(t)dw(t)

z(0) = zo (7)

which has the solution

t

z(t) = xo —|—/ a(s)ds+ [ b(s)dw(s).

0 0
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The transition probability density of x(t) is a function p(x, s; y, t) satisfying the
condition

P(a(t) € Aa(s) =) = /A P, 539, 1)dy

for t > s where A is any set in R. It is supposed that a(t) and b(t) are
deterministic functions. The stochastic integral

t
X0 = [ Hs)duts
0
is a limit of linear combinations of independent normal variables
D ob(t)[w(tivr) — w(t)].

Thus, the integral is also a normal variable. But, then

x(t) = z(t) — zo — /01 a(s)ds

is a normal variable, and therefore

1 _ w=m)?
20

where
m = E(z(t)|z(s) = x).

Now

Ex(t)|z(s)=z) == +/ a(u)du

is the expectation of the stochastic integral vanishes.

= /: b%(u)du.

Thus, p(z, s;y,t) is given by the following equation

The variance is given by the relation

2

o= Varz(t) = B Ut b(u)dw(u)}

(y - - f; a(u)du)2
p(z,s;y,t) = [27r/: bz(u)du}_ .6_ 2 [1 b2 (u)du

Nl=

For proofs and other aspects see [3], [8], [13], [23], [20].
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4 From chaotic motion to Brownian motion

In our days the Brownian motion is of ever increasing importance not only in
Probability theory but also in classical analysis and its applications.
Frequently, Brownian motion was explained as due to the fact that particles
were alive. Today we know that this motion is due to the bombardament of the
particles by the molecules of the medium. In a liquid, under normal conditions,
the order of magnitude of the number of these impacts is of 1020 per second.
Let us imagine a chaotic motion of a particle of colloidal size immersed in
a fluid. Such a chaotic motion of a particle is called, usually, Brownian motion
and the particle which performs such a motion is referred to as a Brownian
particle. Such a chaotic perpetual motion of a Brownian particle is the result
of the collisions of particle with the molecules of the fluid in which there is.
But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.
On the other hand, for a Brownian particle such molecular collisions ap-
pear in a very rapid succession, their number being enormous. For a so high
frequency, evidently, the small changes in the particle’s path, caused by each
single impact, are too fine to be observable. For this reason the exact path of
the particle can be described only by statistical methods.
Thus, the influence of the fluid on the motion of a Brownian particle can
be described by the combination of two forces in the following way:

1. The considered particle is much larger than the particle of the fluid so
that the cumulated effect of the interaction between the Brownian particle and
the fluid may be taken as having a hydrodynamical character. Thus, the first
of the forces acting on the Brownian particle may be considered to be the forces
of dynamical friction. It is known that the frictional force exerted by the fluid
on a small sphere immersed in it is determined from the Stockes’s law: the
drag force per unit mass acting on a spherical particle of radius a is given by

6
—Bv, with f = ﬂ, where m is the mass of the particle, 7 is the coefficient

of dynamical viscosity of the fluid, and v is the velocity of particle.

2. The other force acting on the Brownian particle is caused by the in-
dividual collisions with the particles of the fluid in which there is. This force
produces instantaneous changes in the acceleration of the particle. Further-
more, this force is random both in direction and in magnitude, and one can say
that it is a fluctuating force. It will be denoted by f(t). For f(t) the following
assumptions are made:

a) The function f(t) is statistically independent of v(t).
b) f(t) has variations much more frequent than the variations in v(t).
¢) f(t) has the average equal to zero.

In these conditions, the Newton’s equations of motion are given by the
following stochastic differential equation

dbfo(t)

I vy + 101 (3)
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which is called the Langevin’s equation.

From the Langevin’s equation, the statistical properties of the function f(t)
can be obtained if its solution will be in correspondence with known physical
laws. One can observe that the solution of (8) determines the transition prob-
ability density (in brief the transition density) p(v,tvg) of the random process
v(t), which verifies the equation

P(v(t) € A)[v(0) =vo) = [ p(v.t,vo)a. 9)
A

‘We do not insist on these aspects, our purpose has been to introduce the
concept of transition density.

Now following K. It6 ([7], [5]) we shall refer shortly to the k-dimensional
Brownian motion and emphasize some of its results.

But, firstly, we shall remind some aspects ragarding to the 3-dimensional
Brownian motion discussed at the 6! CMSIM international Conference.

It is not difficult to observe that a definition of a Markov process as in
Definition 22 not correspond to many processes that are of a real interest. For
this reason it is useful to obtain an extension of this notion (such an extended
notion has been proposed by K. Ito).

Let E be a separable Banach space with real coefficients and norm || - || and
let also L(E, E) be the space of all bounded linear operators £ — E. It can
be observed that L(F, E) is a linear space.

Definition 41 The collection of stochastic processes
X={Xi(w)=wlt)e S, teT,we (2,K,P,)}ues
1s called a ”Markov process” if the following conditions are satisfied:

1) the ”state space” S is a complete separable metric space and K(S) is a
topological o-algebra on S;

2) the "time internal” T = [0, 00);

3) the "space of paths” 2 is the space of all right continuous functions T — S
and K is the o-algebra K[ X, : t € T| on §2;

4) the probability law of the path starting at a, P,(H), is a probability measure
on (£2, K) for every a € S which satisfy the following conditions:
4a) Py(H) is K(S)-measurable in a for every H € K;
4b) Po(Xo=a)=1;
40) Pa(Xt1 € El, ce ,th (S En) =

Pa(th c dal)Pal (Xt2,t1 S dag) .
a; €Ly
coiPo, (Xt -4, €day) for 0<t; <ty <...<ty.

According to Definition 41, X will be referred as a Markov process in the
generalized sense.

Now let X be a Markov process in a generalized sense and let us denote
by B(S) the space of all bounded real K(S)-measurable functions. Also let us
consider a function f € B(S).
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It is supposed that
o0

£ [ rcxoae) (10)

0

is bounded in a. Therefore

Uf(a) = Eq (7f<xt>dt) (11)
/

is well-defined and is a bounded K (S)-measurable function of a € S.

The U f is called the potential of f with respect to X. Having in view that
Uf =limy 0 Raf, it is reasonable to write Ry instead of U. Based on this fact,
R, f will be called the potential of order o of f.

Remark 1. Tt is useful to retain that R, f € B(S) for a > 0; and generally
f € B(S) while Ryf(=Uf) € B(S) under the condition (10).

Now the name potential is justified by the following theorem on the 3-
dimenstonal Brownian motion

Theorem 41 Let X be the 3-dimensional Brownian motion. If f € B(S) has
compact support, then f satisfies (10) and

1 bydb 1
o |J;)(—) 2 =5 % Newtonian potential of t. (12)
R3

Uf(a) =

Let us denote by D a bounded domain in R™,n > 1.

Definition 42 A function g is called "harmonic” in D if g is C* in D and
if Ag = 0 (where C™ is the class of functions differentiable infinitely many
times. ).

Now let f be a continuous function defined on the boundary 0D and let us
denote by X a k-dimensional Brownian motion defined as follows

Definition 43 The k-dimensional Brownian motion is defined on S = R* by
the equality

lb—a|?

pe(a,db) = (2nt)"3e~ 2 db = N,(b— a)db,

where |b— a| is the norm of b — a in R*.

Given a k-dimensional Brownian motion X, if there exists a solution ¢ for

the Dirichlet problem (D, f), then

g9(a) = Eq(f(X))), (13)

The Diriclet problem D, f is to find a continuous function g = g, , on the closure
D = D U 3D such that g is harmonic in D and g = f o gdD.
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where A = A\p = exit time from D (that is to say Ap = inf{t > 0: X; & D},
the hitting time of D).
In this context an interesting result is given in the following theorem

Theorem 42 If D is a bounded domain and g is a solution of the Dirichlet
problem (D, f), then

gla) = Ea(f(X)))
where a € D and A = Ap.

On the other hand, the Dirichlet problem (D, f) has a solution if 9D is
smooth as it is prooved in the following theorem

Theorem 43 If 0D is smooth, then

g9(a) = Ea(f(X))),

where X\ = Ap = exit time from D, is the solution of the Dirichlet problem (D,
f)-

Note 41 The expression “0D is smooth” means that 0D has a unic tangent
plane at each point x of 0D and the outward unit normal of the tangent plane
at x moves continously with x.

Remark 2. Many other details regarding to the topics just discussed, proofs
and some related problems can be found in [7], [6], [1], [5], [25], [15], [23], [14],
[20], [18].

Conclusion 41 The Brownian motion can be represented as a random sum of
integrals of orthogonal functions. Such a representation satisfies the theoreti-
cian’s need to prove the existence of a process with the four defining properties
of Brownian motion, but it also serves more concrete demands, one of the most
important being the “chaotic and complex systems analysis”.

Especially, the series representation can be used to derive almost all of the
most important analytical properties of Brownian motion.

It can also give a powerful numerical method for generating the Brownian
motion paths that are required in computer simulation.
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