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Abstract. It is known that wrong clinical diagnosis of Parkinson’ disease is about 20 % 

among patients suffering from pathological tremor. That is why the search of new 

possibilities to improve the diagnostics has high priority. The aim of the work is to 

answer the question whether the methods of nonlinear dynamics can be used for the 

guaranteed differential diagnostics of two main types of pathological tremor 

(parkinsonian and essential ones). We have analyzed tremor determined as fast 

involuntary shaking and arising during the performance of the motor task by healthy 

subjects and two groups of patients with parkinsonian syndrome. The first group has the 

primary Parkinson’s disease and the second group has the essential tremor as finger’s 

shaking during the some movements as the main symptom. Using the wavelet transform 

modulus maxima method, the calculation of the Hölder exponents as well as the 

detection of unstable periodic orbits and surrogate data we demonstrate the statistically 

confirmed differences in dynamical complexity, multifractality degree and number of 

unstable periodic orbits for the two groups of patients. The results give the positive 

answer the question rose in the work. 

Keywords: Dynamical Complexity, Unstable Periodic Orbits, Multifractality, 

Parkinson’s disease, Essential Tremor. 

 

 

1  Introduction 
 

In spite of enormous number of works [1, 2] devoted to the study of 

pathological tremor the topic is of immediate interest because of large number 

of clinical errors connected with wrong administration of antiparkinsonian drugs 

for subjects having tremor symptoms but not having Parkinson’ disease. For 

example, parkinsonian tremor and so called essential tremor (or action tremor) 

when the body parts are involved into involuntary shaking   during the 

movement performance differ by frequency. The frequency in essential tremor, 

however, declines with age in the side of the parkinsonian tremor frequency [3] 

so that oldest patients can be objects of clinical errors. 

 

The aim of the work is to answer the question whether the methods of nonlinear 

dynamics can be used for the guaranteed differential diagnostics of two main 

types of pathological tremor (parkinsonian and essential ones).  
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We studied involuntary shaking (tremor) of fingers accompanied the 

performance of the motor task such as sustaining the given effort of human 

hands under isometric conditions (without finger movement in space). For 

estimating the tremor features we used the methods of nonlinear dynamics such 

as the wavelet transform and multifractal analysis as well as recurrence plot 

technique for detecting unstable periodic orbits and surrogate data. We 

demonstrate the use of these methods for a diagnostics of the human motor 

dysfunction.  

 

2  The experimental procedure 

We used the results of testing 10 healthy subjects aged 47-54 years, 6 

parkinsonian patients with bilateral akinesis and tremor aged 45–62 years and 7 

subjects with syndrome of essential tremor and without other symptoms of 

Parkinson’ disease. The motor task was to control the isometric muscle effort 

with the strength of muscle contraction shown by the positions of marks on a 

monitor. The subjects sat in front of a monitor standing on a table and pressed 

on platforms containing stress sensors with their fingers. The sensors 

transformed the pressure strength of the fingers of each hand into an electric 

signal. The rigidity of the platforms made it possible to record the effort in the 

isometric mode, i.e., without noticeable movement of fingers at the points of 

contact with the sensors. The isometric effort was recorded for 50 s. The 

subject’s fingers sustained an upward muscle effort, with the back of each hand 

pressing against the base of the platform. 

The patients with Parkinson’s disease did not take any drugs before the test on 

the day of testing. Usually, these patients received nakom, an antiparkinsonian 

preparation three times a day to compensate for dopamine deficiency. The 

subjects with syndrome of essential tremor did not have tremor medication.  

The recorded trajectory of isometric effort consisted of a slow trend and a fast 

involuntary component (tremor), which was isolated from the recorded 

trajectory using the MATLAB software. 

 

3  Wavelet transform and multifractality 

3.1 Estimation the global wavelet spectrum of the tremor 
 

To evaluate the difference between physiological and pathological tremors, we 

used the wavelet transform modulus maxima (WTMM) method [4] based on the 

continuous wavelet transform of a time series describing the examined tremor 

x(t): 
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where a and t0  are the scale and space parameters, ψ((t- t0)/a) is the wavelet 

function obtained from the basic wavelet ψ(t) by scaling and shifting along the 

time, symbol * means the complex conjugate. As the basic wavelet we use the 

complex Morlet wavelet:  
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where the second component in brackets can be neglected at 0=2>0, the 

multiplier factor exp(i0t) is a complex form of a harmonic function modulated 

by the Gaussian ),5.0exp( 2t  the coefficient 4/1  is necessary to normalize the 

wavelet energy. The value ω0=2π gives the simple relation    f=1/a   between the 

scale a and the frequency f of the Fourier spectrum. Then expression has the 

form: 
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The modulus of the wavelet spectrum  W(f, t0)  characterizes the presence and 

intensity of the frequency f at the moment t0 in the signal and W(f, t0)
2   

describes the instantaneous distribution of the tremor energy over frequencies, 

that is, the local spectrum of the signal energy at the time t0.. 

The value   
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determines the global wavelet spectrum, i.e., the integral distribution of the 

wavelet spectrum energy over frequency range on the time interval [t1 , t2 ].  

 

3.2 Estimation the tremor multifractality 
 

Information about possible multifractal feature of the signal and its localization 

t0 reflects in the asymptotic behavior of coefficients W(a, t0)  at small a values 

and large f values, respectively. Abnormal small decrease of the wavelet 

coefficients at a→0   in a neighborhood of the point t0   testifies about 

singularity of the signal at the point. Thus, the rate of the change of the modulus 

of the wavelet coefficients enables to analyze the presence or absence of 

singularities of the signal.  

The degree of singularity of the signal x(t) at the point t0 is described by the 

Hölder exponent, h(t0),  the largest exponent such that the analyzed signal in a 

neighborhood of the point t0 can be represented as the sum of the regular 

component (a polynomial Pn(t) of order n < h(t0)) and a member describing a 

non - regular behavior [4]:  
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The value h(t0) is the measure of singularity of the signal at the point  t0  since 
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the smaller  h(t0) value, the more singular the signal. The Holder exponents 

characterize the presence of correlations of different types in the analyzed 

process, e.g., anti-correlated (h < 0.5) or correlated (h > 0.5) dynamics or 

absence of correlations (h = 0.5).  

The Hölder exponents are found on the basis of statistical description of local 

singularities by partition functions [5].  The algorithm consists of the following 

procedures.  

1) The continuous wavelet transform of the time series is used. 

2) A set L(a) of lines of local modulus maxima of the wavelet coefficients is 

found at each scale  a 

3) The partition functions are calculated by the sum of q  powers of the modulus 

maxima of the wavelet coefficients along the each line at the scales smaller the 

given value a: 
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tl(a*) determines the position of the maximum corresponding to the line l at this 

scale 

4) The partition function is )(~),( qaaqZ  at a→0 [5], therefore, the scaling 

exponent can be extracted as  

.log),(log~)( 1010 aaqZq  

5) Choosing different values of the power q one can obtain a linear dependence 

τ(q) with a constant value of the Hölder exponent  

constdqqdqh  )()(   

for monofractal signals and nonlinear dependence )()()( hDqqhq  with 

large number of the Hölder exponents for multifractal signals. 

6) The singularity spectrum (distribution of the local Hölder exponents) is 

calculated from the Legendre transform [5]:  

).()()( qqqhhD   

 

Using the global wavelet spectra and the WWTM algorithm for the different 

tremor recordings we obtain the maximum of the global tremor energy (Emax) 

and two multifractal parameters: a) the width of the singularity spectrum    

∆h = hmax – hmin , 

where hmax and hmin  are the maximal and minimal values of the Holder exponent 

corresponding to minimal and maximal tremor fluctuation, respectively; b) the 

asymmetry of the singularity spectrum  

∆ =  ∆2 – ∆1 , 

where    ∆1 = hmax – h0    and  ∆2 = h0 – hmin ,      h0 = h (q = 0).  
Smaller Δh indicates that the time series tends to be monofractal and larger Δh 

testifies the enhancement of multifractality. The asymmetry parameter ∆ 

characterizes where, in the region of strong singularities  (q > 0) or in the region 

of weak singularities (q < 0), the singularity spectrum is more concentrated. 

To compare the mean values in each of the examined group of subjects the 

Student criterion was applied. 
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4  Recurrence plot and localization of unstable periodic orbits 

The set of unstable periodic orbits (UPOs) which form the skeleton of the 

chaotic attractor can be found by the recurrence quantification analysis (RQA) 

[6]. The calculation for the RQA was performed using the CRP Toolbox, 

available at tocsy.pik-potsdam.de/crp.php.  

A recurrence plot (RP) is a graphical representation of a matrix defined as  

 ,),(
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where  is an error (threshold distance for RP computation),  (·) is the 

Heaviside function, symbol  . denotes a norm and y is a  phase space trajectory 

in a  m-dimension phase space [7]. The trajectory can be reconstructed from a 

time series by using the delay coordinate embedding method [8]. 

The values Ri,j =1 and Ri,j =0 are plotted as gray and white dots, reflecting  
events that are termed as recurrence and nonrecurrence, respectively. 

The recurrence time is defined as the time needed for a trajectory of a dynamical 

system to return into a previously visited neighborhood [9]. 

The pattern corresponding to periodic oscillations (periodic orbits) is reflected 

in the RP by noninterrupted equally spaced diagonal lines. The vertical distance 

between these lines corresponds to the period of the oscillations. The chaotic 

pattern leads to the emergence of diagonals which are seemingly shorter. The 

vertical distances become irregular. When the trajectory of the system comes 

close to an unstable periodic orbit (UPO), it stays in its vicinity for a certain 

time interval, whose length depends on how unstable the UPO is [9, 10]. Hence, 

UPOs can be localized by identifying such windows inside the RP, where the 

patterns correspond to a periodic movement. If the distance between the 

diagonal lines varies from one chosen window to the other then various UPOs 

coexist with  different periods.  

The period of UPO can be estimated by the vertical distances between the 

recurrence points in the periodic window multiplied by the sampling time of the 

data series [9, 11].   

The algorithm for finding UPOs consists of the following procedures.  

1. A phase space trajectory y(t) is reconstructed from a measured time series 

{x(t)} by the delay coordinate embedding method: 

 

y(t)=(x(t), x(t+d),…, x(t+(m-1)d), 

 

where m is the embedding dimension and d is the delay time. Parameters m=5 

and d =2 were chosen on the basis of first minimum of the mutual information 

function and the false nearest neighbor method [12]. 

2. To identify unstable periodic orbits a recurrence  plot  

 ,),(
, jiji

yymR    

is constructed with the threshold distance  equal to 1% of the standard 

deviation of the data series. 
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3. The recurrence times of second type [10] are found for the recurrence 

neighbourhood of radius . The values of   recurrence periods are determined as 

recurrence times multiplied by the sampling time of the data series. The values 

are  recorded in a histogram. The periods of UPOs are the maxima of the 

histogram of the recurrence periods.  

4. To exclude the noise influence the obtained UPOs are tested for statistical 

accuracy. For this purpose the procedure is repeated for 30 surrogates obtained 

as randomized versions of the original data. In the surrogate data the time 

interval sequences are destroyed by randomly shuffling the locations of the time 

intervals of original data [13]. 

The statistical measure of the presence of statistically significant UPOs in the 

original time series is given by the ratio  

,/)(
_

AAk   

where A is the value of maximum of the histogram, 
_

A   is the mean of A for 

surrogates and   is a standard deviation. The value of k characterizes the 

existence of statistically significant UPOs in the original data in comparison 

with its surrogate (noisy) version. The value k>2 means the detection of UPOs 

with a greater than 95% confidence level. 

 

 

5 Results and discussion 
 

Examples of fast component of the isometric force trajectory of the human hand 

(tremor) for the healthy subject, the patient with Parkinson disease and for the 

subject with essential tremor as well as their global wavelet spectra are given in 

Fig.1.The healthy and pathological tremors differ by spectra maxima. The 

maximum (Emax) of the physiological tremor spectrum is in the frequency range 

of the alpha rhythm [8, 14] Hz. For the pathological tremor Emax   is shifted in 

the theta range [4, 7.5] Hz and it increases in ten times in the parkinsonian 

tremor and in five times in the essential one as compared with the healthy 

tremor. The essential tremor spectrum has two peaks as opposed to the 

parkinsonian tremor but the values of the peaks do not differ significantly. 

Figure 2 illustrates the differences in the singularity spectra D(h) for the same 

subjects. The form of spectrum testifies the multifractality of both physiological 

and parkinsonian tremor but the spectra differ for the three examples.  
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Fig.1 Examples of healthy, parkinsonian and essential  tremors (left column)   and their 

global wavelet spectra  E(f) (right column) 
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Fig. 2 Examples of the singularity spectra D(h) for the different tremors (left column)   

and intervals between local maxima of the tremor data (right column) 
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The healthy tremor is characterized by the largest width ∆h of the singularity 

spectrum and, therefore, by the significant degree of multifractality. The decline 

in the width of the spectrum shows a fall in the multifractality degree. It means a 

reduction of nonuniformity of the pathological tremors. We illustrate it in the 

right column of Figure 2 where intervals between local maxima of the tremor 

data are depicted. 

The parkinsonian tremor is characterized by the smallest width of the  

singularity spectrum and its smallest asymmetry (∆). The values of ∆h and ∆ for 

the essential tremor are larger than for the parkinsonian one but they do not 

exceed the values for healthy tremor. 

The decrease of the both parameters in pathological tremor is due to decreasing 

contribution of weak fluctuations (for q < 0). These fluctuations lead to the 

expansion of the singularity spectrum and emergence of both anticorrelated (for 

h < 0.5) and correlated (for h > 0.5) dynamics of sequent intervals between local 

maxima of the tremor data. 
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Fig. 3.  Examples of recurrence plots for the different tremors (left column)   and 

histograms of recurrence periods for tremor data and their surrogates (right column, solid 

and dash-and-dot lines, respectively). 

Parameters: the embedding dimension m=5, the delay time d =2, the threshold distance  

=1% of the standard deviation of the data series. 
 

The recurrence plots depicted in Figure 3 exhibit non-homogeneous but  

quasi-periodic recurrent structures reflecting in that the distances between the 

diagonal lines vary in all the three considered tremors. The RP of the healthy 

tremor is characterized by small black rectangles, whereas the RPs from the 

pathological tremors show larger rectangles. These rectangles may reflect time 

intervals when the trajectory is travelling near the corresponding UPOs [10].  

The recurrence times obtained from the RP given in the Figure 3 are clustered in 

the intervals around the value i=24 for the healthy tremor, around i=36 and 72 
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for the parkinsonian one and around  i=28,  84  and 168 for the essential tremor. 

Taking into account the value of the sampling rate value dt=0.005(s) the 

recurrence periods are equal to 0.12 (s) for the healthy data, 0.18 (s) and 0.36 (s) 

for the parkinsonian data and 0.14 (s), 0.42 (s) and 0.84 (s) for the essential data. 

These recurrence periods were extracted as peaks of the histograms given in the 

right column of Figure 3 (solid lines). The periods obtained can be used for 

localization of UPOs. 

Testing surrogate data we excluded the values 0.12 (s) and 0.36 (s) since  the  

statistical measure k<1  in both cases. For other recurrence periods extracted 

from Figure 3 the value k>2 that supports the detection of UPOs with a greater 

than 95% confidence level. Thus, for the healthy tremor data represented in 

Figure 3 there are no statistically significant UPOs. By contrast, the UPO of 

period 1 (0,18 s) is found  for the parkinsonian tremor and the UPOs of periods 

1, 3 and 6 are obtained  for the essential tremor (0.42/0.14=3,  0.84/0.14=6). 

The similar dynamics of the wavelet and multifractal parameters as well as 

UPOs localization is observed for all the examined subjects. It enables us to use 

the common practice of averaging the recordings of all subjects for testing 

significant variations among the groups.  

The values of Emax, ∆h, ∆ and statistical measures k  for UPOs of various periods 

averaged by subjects in every group are given in Table 1.  

 

tremor hand healthy parkinsonian essential 

Emax left 0.0290.001 0.450.02 0.250.01 

right 0.0370.003 0.560.04 0.310.02 

∆h left 0.830.08 0.220.02 0.490.05 

right 0.760.09 0.270.02 0.420.04 

∆ left 0.460.04 0.090.01 0.270.03 

right 0.380.03 0.120.01 0.200.02 

k (p1) left <1 4.90.8 5.70.9 

right <1 3.80.6 4.50.8 

k (p2) left <1 <1 <1 

right <1 2.10.6 <1 

k (p3) left <1 <1 2.10.3 

right <1 <1 2.70.3 

k (p6) left <1 <1 3.80.4 

right <1 <1 4.10.4 
 

Table 1. Comparison of the mean values of wavelet and singularity spectra 

characteristics and statistical measure of UPOs (averaging over subjects inside the every 

examined group).  

The significant distinctions between the states (pathological or physiological 

tremor) are identified by all the parameters (p<0.03). The values for the 

essential and parkinsonian tremors also differ (p<0.05). 

The results serve one more verification for the decline of dynamical complexity 

of time intervals in pathological tremor. It exhibits in the decrease of the 



O. E. Dick 252 

multifractality degree, disappearance of long–range correlations and transitions 

to strongly periodic dynamics including the emergence of unstable periodic 

orbits in involuntary oscillations of the human hand. 
 

Conclusions 

Our study of differences in involuntary oscillations arising during the 

maintenance of isometric force by the human hand of a subject suffering from 

Parkinson’ disease and a subject having tremor symptoms but not having the 

disease demonstrates that the multifractal characteristics and number of UPOs 

can serve useful indicators of a dysfunctional network in the central nervous 

system.  
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