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Abstract. We study the dynamics shown by the discrete time Diamond overlapping-
generations model with the VES production function in the form given by Revankar[10]
and compare our results with those obtained by Brianzoni et al.[2] in the Solow model.
We prove that, as in Brianzoni et al.[2], unbounded endogenous growth can emerge if
the elasticity of substitution is greater than one; moreover, differently from Brianzoni
et al.[2], the Diamond model can admit two positive steady states. We also prove that
complex dynamics occur if the elasticity of substitution between production factors
is less than one, confirming the results obtained by Brianzoni et al.[2]. Numerical
simulations support the analysis.
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1 Introduction

The elasticity of substitution between production factors plays a crucial role in
the theory of economic growth, it being one of the determinants of the economic
growth level (see Klump and de La Grandville[6]).

Within the Solow model (see Solow[11], and Swan[12]) it was found that a
country exhibiting a higher elasticity of substitution experiences greater capital
(and output) per capita levels in the equilibrium state (see Klump and de La
Grandville[6], Klump and Preissler[7], and Masanjala and Papageorgiou[8]).
More recently, the role of the elasticity of substitution between production
factors in the long run dynamics of the Solow model was investigated both
considering the Constant Elasticity of Substitution production function (CES)
(see Brianzoni et al.[1]) and the Variable Elasticity of Substitution production
function (VES) (see Brianzoni et al.[2]). The results obtained demonstrate
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that fluctuations may arise if the elasticity of substitution between production
factors falls below one.

Miyagiwa and Papageorgiou[9] moved the attention to the Diamond over-
lapping-generations model (Diamond[4]) while proving that, differently from
the Solow setup, “if capital and labor are relatively substitutable, a country
with a greater elasticity of substitution exhibits lower per capita output growth
in both transient and steady state”. To reach this conclusion they considered
the normalized CES production function.

In the present work we consider the Diamond overlapping-generations model
with the VES production function in the form given by Revankar[10] (see also
Karagiannis et al.[5]). Our main goal is to study the local and global dynamics
of the model to verify if the main result obtained by Brianzoni et al.[2] in the
Solow model, i.e. cycles and complex dynamics may emerge if the elasticity
of substitution between production factors is sufficiently low, still holds in the
Diamond framework.

To summarize, the qualitative and quantitative long run dynamics of the
Diamond growth model with VES production function are studied, to show that
complex features can be observed and to compare the results obtained with the
ones reached while considering the CES technology or the Solow framework.

2 The economic setup

Consider a discrete time setup, t ∈ N, and let yt = f(kt) be the produc-
tion function in intensive form, mapping capital per worker kt into output per
worker yt. Following Karagiannis et al.[5] we consider the Variable Elasticity of
Substitution (VES) production function in intensive form with constant return
to scale, as given by Revankar[10]:

yt = f(kt) = Akat [1 + bakt]
(1−a), kt ≥ 0 (1)

where A > 0, 0 < a < 1, b ≥ −1; furthermore 1/kt ≥ −b, in order to assure
that f(kt) > 0, f ′(kt) > 0 and f ′′(kt) < 0, ∀kt > 0, where

f ′(kt) = Aakat (1 + abkt)
1−a[k−1t + (1− a)b(1 + abkt)

−1]

and

f ′′(kt) = A
a(a− 1)(1 + abkt)

−a−1

k2−at

.

The elasticity of substitution between production factors is then given by

σ(kt) = 1 + bkt

hence σ ≥ (<)1 iff b ≥ (<)0. Thus the elasticity of substitution varies with
the level of capital per capita, representing an index of economic development.
Observe that, while the elasticity of substitution for the CES is constant along
an isoquant, in the case of the VES it is constant only along a ray through the
origin.
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In the Diamond[4] overlapping-generations model a new generation is born
at the beginning of every period. Agents are identical and live for two periods.
In the first period each agent supplies a unit of labor inelastically and receives
a competitive wage:

wt = f(kt)− ktf ′(kt),

thus, taking into account the specification of the production function in (1),
we obtain

wt = Akat
(1 + 2abkt)(1− a)

(1 + abkt)a
. (2)

As in Miyagiwa and Papageorgiou[9] we assume that agents save a fixed
proportion s ∈ (0, 1) of the wage income to finance consumption in the second
period of their lives. All savings are invested as capital to be used in the next
period’s production, so that the evolution of capital per capita is described by
the following map

kt+1 = φ(kt) =
s

1 + n
wt =

sA

1 + n
kat

(1 + 2abkt)(1− a)

(1 + abkt)a
, (3)

where n > 0 is the exogenous labor growth rate and capital depreciates fully.
As in Brianzoni et al.[2] we distinguish between the following two cases.
(a) If b > 0 the elasticity of substitution between production factors is

greater than one and the standard properties of the production function are
verified ∀kt > 0; in this case kt evolves according to (3).We do not consider the
case b = 0 as σ(kt) becomes constant and equal to one, ∀kt ≥ 0, thus obtaining
a particular case of the CES production function.

(b) If b ∈ [−1, 0) the elasticity of substitution between production factors is
less than one and the standard properties of the production function are verified
for all 0 < kt < − 1

b ; in this case kt evolves according to (3) iff kt ∈ [0,−1/b]
while, following Karagiannis et al.[5] and Brianzoni et al.[2], if kt > −1/b then
kt = φ(−1/b).

3 Local and Global Dynamics

3.1 Elasticity of Substitution Greater than One

Let b > 0. Then the discrete time evolution of the capital per capita kt is
described by the continuous and differentiable map (3).

The establishment of the number of steady states is not trivial to solve,
considering the high variety of parameters. As a generale result, the map φ
always admits one fixed point characterized by zero capital per capita, i.e.
k = 0 is a fixed point for any choice of parameter values. Anyway steady states
which are economically interesting are those characterized by positive capital
per worker. In order to determine the positive fixed points of φ, let us define
the following function:

G(k) =
1− a
k1−a

1 + 2abk

(1 + abk)a
, k > 0 (4)
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where

G′(k) =
(1− a)

k2−a(1 + abk)1+a
[(a− 1) + (2a− 1)abk], (5)

then solutions of G(k) = 1+n
sA are positive fixed points of φ.

The following proposition establishes the number of fixed points of map φ.

Proposition 1 Let φ given by (3).

(i) Assume b > 0 and a ≤ 1
2 . Then:

(a) if 1+n
sA > (ab)1−a2(1 − a), φ has two fixed points given by kt = 0 and

kt = k∗ > 0;
(b) if 0 < 1+n

sA ≤ (ab)1−a2(1 − a), φ has a unique fixed point given by
kt = 0.

(ii) Assume b > 0 and a > 1
2 and let km = 1−a

ab(2a−1) . Then:

(a) if 1+n
sA < ( a2b

1−a )1−a( 1−a
a ), φ has a unique fixed point given by kt = 0;

(b) if 1+n
sA = ( a2b

1−a )1−a( 1−a
a ), φ has two fixed points given by kt = 0 and

k∗ = km;

(c) if ( a2b
1−a )1−a( 1−a

a ) < 1+n
sA < (ab)1−a2(1 − a), φ has three fixed points

given by kt = 0, kt = k1 and kt = k2, where 0 < k1 < km < k2;
(d) if 1+n

sA ≥ (ab)1−a2(1 − a), φ has two fixed points given by kt = 0 and
k∗ > 0, where 0 < k∗ < km.

Proof. kt = 0 is a solution of equation kt = φ(kt) for all parameter values
hence it is a fixed point. Function (4) is such that G(kt) > 0 for all kt > 0,
furthermore limkt→0+ G(kt) = +∞ while limkt→+∞G(kt) = (ab)1−a2(1− a).

(i) Observe that if b > 0 and a ≤ 1
2 , G(k) is strictly decreasing ∀kt > 0

since G′(k) < 0. Hence G(kt) intersects the positive and constant function
g = 1+n

sA in a unique positive value kt = k∗ iff 1+n
sA > (ab)1−a2(1− a).

(ii) Assume a > 1
2 and b > 0 then G has a unique minimum point km =

1−a
ab(2a−1) where G(km) = ( a2b

1−a )1−a( 1−a
a ). Hence, if ( a2b

1−a )1−a( 1−a
a ) < 1+n

sA <

(ab)1−a2(1 − a), then equation G(kt) = 1+n
sA admits two positive solu-

tions. Similarly, it can be observed that if 1+n
sA = ( a2b

1−a )1−a( 1−a
a ) or

1+n
sA ≥ (ab)1−a2(1 − a) then φ(kt) admits a unique positive fixed point.

Trivially, for the other parameter values, equation G(kt) = 1+n
sA has no

positive solutions.

For what it concerns the local stability of the steady states the following
proposition holds.

Proposition 2 Let φ be as given in (3).

(i) The equilibrium kt = 0 is locally unstable for all parameter values.
(ii) If φ admits two fixed points then the equilibrium kt = k∗ > 0 is locally

stable.
(iii) If φ admits three fixed points, then the equilibrium kt = k1 is locally stable

while the equilibrium kt = k2 is locally unstable.
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Proof. Firstly notice that function φ may be written in terms of function G
being:

φ(k) =
sA

1 + n
kG(k) (6)

hence φ′(k) = sA
1+n [G(k) + kG′(k)].

(i) Since limkt→0+ G(kt) = +∞ and limkt→0+ kG
′(kt) = +∞, then φ′(0) =

+∞ and consequently the origin is a locally unstable fixed point for map
φ.

(ii) Assume that φ admits two fixed points. After some algebra it can be
noticed that

φ′(k) =
a(1 + a)sA

1 + n

(1 + abk)−1−a

k1−a
[2ab2k2 + 2b(1 + a)k+ 1] > 0 ∀k > 0

(7)
hence φ(k) is strictly increasing and consequently k∗ is locally stable. In

the particular case in which 1+n
sA = ( a2b

1−a )1−a( 1−a
a ) then k∗ = km is a non

hyperbolic fixed point: a tangent bifurcation occurs at which k∗ is locally
stable.

(iii) Assume that φ has three equilibria. Since φ′(k) > 0 ∀k > 0 then point (iii)
is easily proved.

The results concernig the existence and number of fixed points and their
local stability when the elasticity of substitution between production factors is
greater than one, are resumed in Fig. 1. We fix all the parameters but s and
we show that, as s is increased, we pass from two to three and, finally, to one
fixed point. Hence it can be observed that unbounded growth can emerge if
the propensity to save in sufficiently high.

As in Brianzoni et al.[2], if the elasticity of substitution between the two
factors is greater than one (b > 0), then unbounded endogenous growth can be
observed but only simple dynamics can be produced. Anyway, differently from
Brianzoni et al.[2], the growth model can exhibit two positive steady states so
that the final outcome of the economy depends on the initial condition (in fact
if k0 ∈ (0, k2) then the convergence toward k1 is observed while if k0 > k2 then
unbounded endogenous growth is exhibited).

3.2 Elasticity of Substitution Less than One

Let b ∈ [−1, 0). Then the discrete time evolution of the capital per capita kt is
described by the following continuous and piecewise smooth map:

kt+1 = F (kt) =

{
φ(kt) ∀kt ∈

[
0,− 1

b

]
φ
(
− 1

b

)
∀kt > − 1

b

. (8)

As it is easy to verify, F is non-differentiable in the point kt = − 1
b , which

separates the state space into two regions R1 = {(k) : 0 ≤ k < − 1
b} and

R2 = {(k) : k > − 1
b}. Furthermore, the map F is constant for kt > − 1

b and
non-linear for 0 ≤ kt ≤ − 1

b . The following proposition describes the number of
fixed points when b ∈ [−1, 0).
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Fig. 1. Map φ, its fixed points and their stability for b = 1, a = 0.7, A = 3 and
n = 0.1. (a) s = 0.8, (b) s = 0.7 and (c) s = 0.6.

Proposition 3 Let F be as given in (8) and b ∈ [−1, 0).

(i) Assume a > 1
2 . Then F has two fixed points given by k = 0 and k∗ ∈

(0,− 1
2ab ).

(ii) Assume a ≤ 1
2 and M = (−b)1−a(1−2a)

(1−a)a−1 . Then:

(a) if 1+n
sA ≥M there exist two fixed points given by k = 0 and k∗ ∈ (0,− 1

b ];
(b) if 1+n

sA < M there exist two fixed points given by k = 0 and k∗ = F (− 1
b ).

Proof. It is easy to see that k = 0 is a fixed point for any choice of the parameter
values.

(i) Firstly notice that φ ≥ 0 iff k ∈ [0,− 1
2ab ] and φ(0) = φ(− 1

2ab ) = 0, so
values of k > − 1

2ab are not economically significant. Moreover φ has

a unique maximum point given by kM = −1−a+
√
1+a2

2ab with φ(kM ) =

sA
1+n

( √
1+a2−1−a

ab
√
1+a2+1−a

)a

(1 − a)(
√

1 + a2 − a). Finally limk→0+ φ
′(k) = ∞.

Hence equation φ(k) = k has always a unique positive solution given by
k∗ ∈ (0,− 1

2ab ).
(ii) The positive fixed points of F such that k ≤ − 1

b are given by the solutions
of equation G(k) = 1+n

sA with G(k) as given in (4) and G > 0 defined in

(0,− 1
b ]. Being G′(k) = (1−a)

k2−a(1+abk)1+a [(a − 1) + (2a − 1)abk], G is strictly

decreasing ∀k ∈ (0,− 1
b ] with minimum point in km = − 1

b and G(km) =

G(− 1
b ) = (−b)1−a(1−2a)

(1−a)a−1 = M . Hence G(k) = 1+n
sA has a unique positive
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solution k∗ ∈ (0,− 1
b ] iff 1+n

sA ≥
(−b)1−a(1−2a)

(1−a)a−1 . Differently, the unique fixed

point of F such that k > − 1
b is defined by k∗ = F (− 1

b ) = φ(− 1
b ) and it

exists iff F (− 1
b ) > − 1

b , which is equivalent to require 1+n
sA < (−b)1−a(1−2a)

(1−a)a−1 .

Let us move to the study of the local stability of the fixed points. Since

φ′(k) =
a(1 + a)sA

1 + n

(1 + abk)−1−a

k1−a
[2ab2k2 + 2b(1 + a)k + 1]

then limk→0+ φ
′(k) = +∞, so that the equilibrium characterized by zero capital-

per capita is always locally unstable.

We firstly focus on the case with a > 1
2 . As it has been discussed, the related

one dimensional map is continuous and differentiable in its domain [0,− 1
2ab ].

Furthermore, φ(0) = φ(− 1
2ab ) = 0 and φ′′(k) < 0 ∀k ∈ (0,− 1

2ab ), i.e. it is
strictly concave. As a consequence map φ behaves as the logistic map, that is
it exhibits the standard period doubling bifurcation cascade as one parameter
is moved (see Devaney[3]).

The period doubling bifurcation cascade is observed, for instance, if A is
increased. In fact it can be easily observed that φ(kM ) increases as A increases
so that ∃Ā such that φ(kM ) > − 1

2ab ∀A > Ā, i.e. almost all trajectories are
unfeasible. At A = Ā a final bifurcation occurs (the origin is a pre-periodic fixed
point and φ is chaotic in a Cantor set) while ∀A ∈ (0, Ā) the period doubling
bifurcation cascade is observed (see Fig. 2 (a),(b) and (e)). Notice also that
the situation presented in panel (b) becomes simpler if a greater value of b is
considered (see Fig. 2 (c)), proving that in order to have complex dynamics b
must be sufficiently low (as also showed in panel (d)).

In order to study the local stability of the positive fixed point when a ≤ 1
2

and b ∈ [−1, 0) we observe that function F has a non differentiable point given
by

P =

(
−1

b
, F (−1

b
)

)
, (9)

where F (− 1
b ) = sA

1+n (−b)−a(1− a)1−a(1− 2a).
Notice that if P is above the main diagonal, the fixed point k∗ is superstable

being F ′(k∗) = 0 and no complex dynamics can be exhibited. This case occurs,
for instance, if A is great enough and the related situation is presented in Fig.

3 (a). If (−b)1−a(1−2a)
(1−a)a−1 = 1+n

sA we get that k∗ = − 1
b , then a border collision of

the superstable fixed point occurs.
If P is below the main diagonal then k∗ may be locally stable or unstable

and complex dynamics may arise.

The following Proposition states a sufficient condition for the existence of
a stable 2-period cycle {k1, k2} such that ki ∈ Ri, (i = 1, 2).

Proposition 4 Let b ∈ [−1, 0). For all b in the region defined as

Ω =

{
b : F 2(−1

b
) > −1

b
∩ (−b)1−a(1− 2a)

(1− a)a−1
<

1 + n

sA

}
(10)
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Fig. 2. a = 0.6, n = 0.1, s = 0.7. (a) If b = −0.7 and A = 9 a stable two period cycle
is presented, while (b) if A = 10 complexity emerges. (c) Locally stable fixed point
for A = 10 and b = −0.3. (d) Bifurcation diagram w.r.t. b. (e) Bifurcation diagram
w.r.t. A.

map F admits a superstable 2-period cycle defined as C2 = {F (− 1
b ), F 2(− 1

b )}.

Proof. A 2-cycle for map F is given by {k1, k2} with F (k1) = k2 and F (k2) =
k1. Let k0 > − 1

b with k0 ∈ R2, then k1 = F (− 1
b ) belongs to R1 (being the

point P below the main diagonal) and k2 = F (k1) = F (F (− 1
b )) = F 2(− 1

b ). If
F 2(− 1

b ) > − 1
b , then F 2(− 1

b ) ∈ R2 and consequently F (F 2(− 1
b )) = F (k2) =

F (− 1
b ) = k1. This proves the existence of a two period cycle. Moreover, the

eigenvalue of such cycle is zero, since F ′(k2) = 0, therefore it is a superstable
two period cycle.
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Notice that in F 2(− 1
b ) = − 1

b a border collision bifurcation of the superstable
2-period cycle occurs. The superstable two period cycle is depicted in Fig. 3
(b).
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Fig. 3. a = 0.4, n = 0.1, s = 0.7. (a) If b = −0.3 and A = 30 the positive steady
state is superstable. (b) The superstable two period cycle for b = −0.3 and A = 15.

In order to describe how complex dynamics may emerge if a ≤ 1
2 , we recall

that F is unimodal and kM = −1−a+
√
1+a2

2ab is its maximum point.
If k∗ ∈ (0, kM ) (i.e. point (kM , F (kM )) is below the main diagonal), then

k∗ is globally stable ∀k0 6= 0. On the contrary, if F (kM ) > kM (i.e. point
(kM , F (kM )) is above the main diagonal), then its eigenvalue is negative and k∗

may lose stability only via a period-doubling bifurcation. Therefore, a necessary
condition for a flip bifurcation is that that point (kM , F (kM )) is above the main
diagonal.

To recap, as in Brianzoni et al.[2], our model can exhibit cycles or more
complex dynamics iff P is below the main diagonal while the maximum point
kM is above the main diagonal. In this case all positive initial conditions
produce trajectories converging to an attractor belonging to a trapping interval
J defined in the following proposition.

Proposition 5 Let (−b)1−a(1−2a)
(1−a)a−1 < 1+n

sA and F (kM ) > kM . Then the one-

dimensional map F admits a trapping interval J , where J is defined as follows:

1. J = [F (− 1
b ), F (kM )] if F (kM ) ≥ − 1

b ,
2. J = [F 2(kM ), F (kM )] if F (kM ) < − 1

b .

Proof. If the one-dimensional map F has a maximum point kM above the
main diagonal and point P is below the main diagonal, then through the
graphical analysis it is possible to see that when the image of kM belongs
to R2 ∪ {− 1

b}, then J = [F (− 1
b ), F (kM )] is mapped into itself; otherwise

J = [F 2(kM ), F (kM )] is mapped into itself by F .

Since every initial condition k0 6= 0 creates bounded trajectories converging
to an attractor included into the trapping interval J , it can be noticed that
if F (kM ) ≥ − 1

b , the flat branch of map F is involved. Moreover, since all
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the points mapped in R2 have the same trajectory of point F (− 1
b ), then the

attractor will be a cycle. The transition from F (kM ) ≥ − 1
b to F (kM ) < − 1

b
corresponds to a border collision bifurcation.

In order to describe the qualitative dynamics occurring on set J , we con-
sider the situation in which k∗ ∈ R1 is locally stable (as in Fig. 4 (a)), for
instance b is close to zero. Then, as b decreases, k∗ becomes unstable via flip
bifurcation and a period doubling route to chaos occurs till a border collision
bifurcation emerges at F (kM ) = − 1

b . This bifurcation occurs at b = bc and a
point of the attractor of F collides with point P . In Fig. 4 (b) and (c) the sit-
uations immediately before and after the border collision bifurcation occurring
at bc ' −0.315 are presented. Notice that after this bifurcation the qualitative
dynamics drastically changes, passing from a complex attractor to a locally
stable 5-period cycle. The related bifurcation diagram is presented in Fig. 4
(d).
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Fig. 4. A = 10, a = 0.49, n = 0.1, s = 0.9. (a) If b = −0.15 the fixed point is
locally stable. (b) Situation before the border collision bifurcation, i.e. b = −0.314.
(c) Situation immediately after the border collision bifurcation, i.e. b = −0.316. (d)
Bifurcation diagram w.r.t. b.

As in Brianzoni et al.[2] if elasticity of substitution between production
factors in less then one, then the system becomes more complex as b decreases
since cycles or more complex features may be exhibited.



Chaotic Modeling and Simulation (CMSIM) 4: 265–275, 2015 275

4 Conclusions

In this paper we considered the Diamond overlapping-generations model with
the VES production function in the form given by Revankar[10]. We examined
existence and stability conditions for steady state and the results of our analysis
show that fluctuation or even chaotic patterns can be exhibited. As in Brianzoni
et al.[2], cycles or complex dynamics can emerge if the elasticity of substitution
between production factors is low enough. Moreover, unbounded endogenous
growth can be observed. A new feature is due to the fact that, if elasticity of
substitution is greater then one, then up to three fixed point can be exhibited.
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