
Chaotic Modeling and Simulation (CMSIM) 4: 323–328, 2015

Intermittency in the Generalized Lorenz Model
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Abstract. We consider a low-dimensional model of hydromagnetic convection in a
horizontally magnetized layer of a viscous fluid heated from below, which is a general-
ization of the standard Lorenz model. We analyze the stability of the fluid influenced
by the induced magnetic field. By changing two control parameters related to the
temperature difference and the applied magnetic field strength, one can see vari-
ous transitions from regular to irregular long-term behavior of the system through
intermittency scenario. We discuss bifurcations leading to both type I and III inter-
mittency. We therefore hope that this model could shed new light on dynamics of
magnetohydrodynamic convection.
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1 Introduction

Dynamics of viscous fluids is still a challenging question in physics of fluids. For
example, a simple case of the Rayleigh-Bénard convection is known for hundred
years [6]. The important breakthrough happened fifty years ago, when starting
from complex basic hydrodynamic equations Lorenz obtained three simple but
nonlinear ordinary differential equations [7]. This seminal well-known paper has
revealed complexity of nonperiodic chaotic deterministic flow, including strange
attractors, bifurcations, and intermittency. Five years ago we have generalized
this model for convection in a horizontally magnetized fluid layer by adding
a new variable responsible for the magnetic field embedded in the fluid [8].
Solutions of this still simple four-dimensional nonlinear deterministic system
can exhibit rather complex nonperiodic behavior, but surprisingly the influence
of the applied magnetic field is not quite trivial. In particular, it appears that by
changing control parameters the system can easily go from equilibrium (fixed
point) or periodic to nonperiodic chaotic or even hyperchaotic behavior [9].
Naturally, besides of the transitions induced by the parameters changes, all
these types of behavior can be intertwined due to intermittent character of
dynamics.
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Fig. 1. Schematic of geometry for Rayleigh-Bénard convection cells

Within the theory of dynamical systems transitions from fixed points to
periodic or nonperiodic flows often occur in a given system through intermit-
tency scenario, where signals alternate between regular (laminar) phases and
irregular bursts. Based on various characteristic of dynamical systems, three
basic types of intermittency have been distinguished in the scientific literature.
Namely, types I, II, and III are related to saddle-node, Hopf, and inverse period
doubling bifurcations, correspondingly [13]. These basic types of intermittent
behavior can be verified experimentally by looking at their statistical prop-
erties. More recently other intermittency mechanisms have also been found,
including, e.g., on-off intermittency [12], eyelet intermittency [11], and ring in-
termittency [4]. In this paper we discuss in detail types I and III intermittency
identified in the generalized Lorenz model.

2 The generalized Lorenz model

The schematics of the standard Rayleigh-Bénard cells in two-dimensions [6] in
a horizontal (x axis) viscous fluid layer of height h and aspect ratio a is shown
in Fig. 1 (no variations in y direction), cf. e.g., Appendices to Refs. [1,14].
The external gravitational field f equal to a constant acceleration g acting
vertically (along z axis) on the fluid of mass density ρ results in the buoyancy
term in the equation of motion, f = ρg. The fluid is heated from below with
an initially applied vertical (z axis) temperature gradient, δT0. As usual, using
a constant coefficient β, we take into account the volume expansion for f term,
ρ = ρ0[1 − β(T − T0)], but except that the fluid is treated as incompressible,
ρ = ρ0 (the Oberbeck-Boussinesq approximation) [10,3].

In the standard three-dimensional Lorenz model, besides a time-dependent
variable X proportional to the intensity of the convective motion, the other two
variables Y and Z describe the temperature profile, see Ref. [7]. In addition,
in the case of the magnetized fluid we have introduced a new time dependent
variable W describing the profile of the magnetic field induced in the convected
fluid. One can expect that in the case of a thin horizontal layer, the influence
of an external horizontal magnetic field should be important. Hence we apply
an initial magnetic field B0 along the x direction.

In this case, by using a reasonable approximation, (B · ∇)v ≈ (B0 · ∇)v
in magnetic advection equation, we have obtained from magnetohydrodynam-
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ics theory [5], described by partial differential equations consisting of Navier-
Stockes equation of motion, magnetic advection-difusion equation, and heat
conduction equation, a generalized model described by four ordinary differen-
tial equations [8]:

Ẋ = −σX + σY − ω0W, (1)

Ẏ = −XZ + rX − Y, (2)

Ż = XY − bZ, (3)

Ẇ = ω0X − σmW, (4)

where dots denote derivatives with respect to the normalized time t′ = (1 +
a2)κ(π/h)2 t, while σ = ν/κ is the Prandtl number (ratio of the kinematic vis-
cosity and the thermal conductivity), and b = 4/(1+a2) is the geometrical fac-
tor for a given fluid. As usual r = Ra/Rc is a control parameter of the dynami-
cal system proportional to the temperature gradient δT0, or a Rayleigh number
Ra = gβh3δT0/(νκ) normalized by a critical number Rc = (1 + a2)3(π2/a)2.

In addition to the standard Lorenz system [7], we have introduced another
control parameter proportional to the initial magnetic field strength B0 applied
to the system, which is defined as a basic dimensionless magnetic frequency
ω0 = vA0/v0, with the Alfvén velocity vA0 = B0/(µ0ρ0)1/2 (using the constant
magnetic permeability µ0) and v0 = 4πκ/(abh) [8,9]. The last term in Eq. (1)
comes from the anisotropic tension of the magnetic field (B · ∇)B/(µ0ρ) in
the equation of motion. Naturally, besides the Prandtl number σ = ν/κ, the
properties of the magnetized fluid are characterized by an analogue parameter
σm = η/κ, where η denotes magnetic diffusive viscosity (resistivity), appearing
in Eq. (4) that results from the magnetic advection and diffusion terms in the
respective magnetohydrodynamics equations.

3 Intermittency

It is worth noting that still in a chaotic regime but in the proximity of the
boundary between chaotic and periodic region we have identified intermittent
behavior of the system illustrated in Fig. 2, where almost periodic oscillations
are interrupted by bursts of irregular behavior [8,9]. This phenomenon of in-
termittency can be observed as bursts of increased energy dissipation, defined
here as ν|v|2 + η|B|2/(µ0ρ). By analysis of a Poincaré map (constructed from
the values of Y variable taken for X = 0 plane crossings) we have identified this
intermittency as type I and III, see Ref. [13]. The intermittency of these types
displays characteristic behavior of the signal, distribution of lengths of laminar
intervals, and dependence of the mean length of laminar interval on bifurcation
parameter as described thoroughly, e.g., in Ref. [14]. In this context, analysis
of statistical properties (e.g. distributions or scaling in intermittency) of the
observed dynamical behavior can be more interesting from experimental point
of view; thus we discuss the statistics below.

Next, we determine the lengths of laminar phases and their distribution
using an algorithm, where pieces of a long numerical solution are compared
to a periodic (laminar) phase pattern in four-dimensional phase space. The
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Fig. 2. The intermittent behavior of the variable W for the generalized Lorenz model
as a function of normalized time identified here for (a) type I for with the control
parameters r = 256 and ω0 = 3.74, (b) type III with the parameters r = 28, ω0 = 4.8,
(σ =10, σm = 1, b = 8/3).

Fig. 3. Distribution of the lengths of laminar phases for (a) r = 256, ω0 = 3.74,
σm = 1. The distribution is characterized by U shape and finite value of maximum
length of laminar phase, which is characteristic for type I intermittency, Eq. (5), (b)
for type III intermittency for small τ → 0 is consistent with power-law dependence,
P (τ) ∼ τ−3/2, observed for fully developed turbulence, while for large τ →∞ follows
exponential behavior, P (τ) ∼ e−2ετ , predicted by self-organized criticality models,
taken from (Macek and Strumik, 2010, 2014).

piecewise numerical solution of Eqs. (1)–(4) is a set of points in the phase
space, thus based on the average distance between the points and their nearest
neighbors found in the laminar pattern we can identify laminar phases.

Here in Fig. 3 we show the probability distribution of the laminar time in-
tervals τ for our model of Eqs. (1)-(4), where a nontrivial nonlinear dependence
is well approximated by the theoretical formulae for type I intermittency

P (τ) =
ε

2c

{
1 + tan2

{
arctan[

c

(εu)1/2
]
}
− τ(εu)1/2

}
(5)
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Fig. 4. Scaling of the mean length of the laminar phase with control parameter ε =
|ω0 − ω0c| (for the cases shown in Fig. 3 (a) and (b)), where ω0c is a critical value at
which intermittency appears: (a) for type I intermittency the dependence resulting
from computations (circles) can be approximated by ∝ ε−1/2 function (solid line),
(b) for type III intermittency ∝ ε−1, cf. (Macek and Strumik, 2014)

where ε = |ω0 − ω0c| is the difference between the actual value of the control
parameter and its critical value for the onset of intermittency (c is the maximum
value of the variable in the laminar region, u is another fitting parameter) [14].
Similarly, type III intermittency is given also in Ref. [14]

P (τ) ∼ ε3/2e4ετ

(e4ετ − 1)3/2
. (6)

In Ref. [8] some solutions (for r = 28, ω0 = 4.8, σ = 10, σm = 1, b = 8/3) of
the dynamical system of Eqs. (1)-(4) have been discussed as examples of type
III intermittent behavior. It is well known that the classical Lorenz system
exhibits type I intermittency transition from periodic to chaotic dynamics for
the value of control parameter r ≈ 166.06. In fact, in the generalized Lorenz
model we have identified a branch of periodic-chaotic boundary originating from
this point for ω0 = 0 in the parameter plane. When the magnetic field is taken
into account, type I intermittency occurs along this branch, e.g., for r = 256,
ω0 ≈ 3.74, σm = 1, which is illustrated in Fig. 3 (a), showing characteristic
U-shape of the distribution of laminar phases [9]. For this type of intermittency
the maximum length of laminar phase has some finite value. Moreover, as is
shown in Fig. 4 (a) in this case we observe another characteristic attributes of
the type I intermittency, namely scaling of the mean length of laminar phase
with control parameter ∝ ε−1/2. One should also note that this functional
dependence for type III intermittency as is shown in Fig. 3 (b) for small τ (τ →
0) is consistent with power-law dependence, P (τ) ∼ τ−3/2, observed for fully
developed turbulence [2]. However, for large τ (τ → ∞) follows exponential
behavior, P (τ) ∼ e−2ετ , predicted by self-organized criticality models.

4 Conclusions

For some values of control parameters near the border between periodic and
chaotic solutions, but still in chaotic regime, we have observed types I and
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III intermittent behavior of the system, which provide mechanisms of release
of the bursts of kinetic and magnetic energy. We have discussed the types of
bifurcations leading to intermittency. Naturally, these transitions from regular
to irregular behavior result from nonlinearity. From the point of view of the
theory of dynamical systems, those phenomena are owing to the disappearance
of the fixed points or due to change in their their stability. It would be inter-
esting to look for the remaining basic type II intermittency and the respective
Hopf bifurcation in our model of hydromagnetic convection.
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