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Abstract. In this paper we shall refer to the passing from chaotic motion to Brow-
nian motion. To this end a review of some aspects concerning the Markovian nature
of the Brownian path is presented. We discuss about some interesting results regard-
ing to the 3-dimensional Brownian motion in connection with the Markov process in
a generalized sense and the k-dimensional Brownian motion in connection with the
Dirichlet problem. Then, we shall refer to some special connected studies.
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1 Introduction

Let us imagine a chaotic motion of a particle of colloidal size immersed in a
fluid. Such a chaotic motion of a particle is called, usually, Brownian motion
and the particle which performs such a motion is referred to as a Brownian
particle. Such a chaotic perpetual motion of a Brownian particle is the result
of the collisions of particle with the molecules of the fluid in which there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions ap-
pear in a very rapid succession, their number being enormous. For a so high
frequency, evidently, the small changes in the particle’s path, caused by each
single impact, are too fine to be observable. For this reason the exact path of
the particle can be described only by statistical methods.

Used especially in Physics, Brownian motion is of ever increasing impor-
tance not only in Probability theory but also in classical Analysis. Its fasci-
nating proper-ties and its far-reaching extension of the simplest normal limit
theorems to functional limit distributions acted, and continue to act, as a cat-
alyst in random ana-lysis. As some authors remarks too, the Brownian motion
reflects a perfection that seems closer to a law of nature than to a human
invention.
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Brownian motion was frequently explained as due to the fact that particles
were alive.

We remind that Poincaré thought that it contradicted the second law of
Thermodynamics.

Today we know that this motion is due to the bombardament of the particles
by the molecules of the medium. In a liquid, under normal conditions, the order
of magnitude of the number of these impacts is of 1020 per second. It is only
in 1905 that kinetic molecular theory led Einstein to the first mathematical
model of Brownian motion. He began by deriving its possible existence and
then only learned that it had been observed.

A completely different origin of mathematical Brownian motion is a game
theoretic model for fluctuations of stock prices due to L. Bachélier from 1900.

In the sequel we shell refer shortly to his vision. At the same time we shall
discuss some aspects regarding the Markovian nature of the Brownian path,
the 3-dimensional Brownian motion in connection with a Markov process in
a generalized sense and the extension to the k-dimensional Brownian motion.
Finally, we shall refer shortly to some special connected studies.

2 The Markovian nature of the Brownian path

In his thesis (Théorie de la spéculation, Ann. Sci. École Norm. Sup. 17, 21-
86, 1900) Bachélier found some solutions of the type ψ(x). He derived the law
governing the position of a single grain performing a 1-dimensional Brownian
motion starting at a ∈ R1 at time t = 0:

Pa[x(t) ∈ db] = g(t, a, b)db (t, a, b) ∈ (0,+∞)×R2, (1)

where g is the source (Green) function

g(t, a, b) =
e−

(b−a)2

2t

√
2πt

(2)

of the problem of heat flow:

∂u

∂t
=

1

2

∂2u

∂a2
(t > 0). (3)

Bachélier also pointed out the Markovian nature of the Brownian path
expressed in

Pa[a1 ≤ x(t1) < b1, a2 ≤ x(t2) < b2, · · · , an ≤ x(tn) < bn] =

=

b1∫
a1

b2∫
a2

· · ·
bn∫
an

g(t1, a, ξ1) g(t2 − t1, ξ1, ξ2) · · ·

· · · g(tn − tn−1, ξn−1, ξn) dξ1 dξ2 · · · dξn, 0 < t1 < t2 < · · · tn (4)

and used it to establish the law of maximum displacement

P0

[
max
s≤t

x(s) ≤ b
]

= 2

b∫
0

e−
a2

2t

√
2πt

da t > 0, b ≥ 0. (5)
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It is very interesting that A. Einstein, in 1905, also derived (1) from statisti-
cal mechanical considerations and applied it to the determination of molecular
diameters (see his work Investigations on the theory of the Brownian movement,
New York, 1956).

The Brownian motion can be defined as follows

Definition 21 A continuous-time stochastic process {Bt | 0 ≤ t ≤ T} is called
a ”standard Brownian motion” on [0, T ) if it has the following four properties:

i B0 = 0.
ii The increments of Bt are independent; that is, for any finite set of times

0 ≤ t1 < t2 < · · · < tn < T, the random variables

Bt2 −Bt1 , Bt3 −Bt2 , · · · , Btn −Btn−1

are independent.
iii For any 0 ≤ s ≤ t < T the increment Bt −Bs has the normal distribution

with mean 0 and variance t− s.
iv For all ω in a set of probability one, Bt(ω) is a continuous function of t.

The Brownian motion can be represented as a random sum of integrals of ortho-
gonal functions. Such a representation satisfies the theoretician’s need to prove
the existence of a process with the four defining properties of Brownian motion,
but it also serves more concrete demands. Especially, the series representation
can be used to derive almost all of the most important analytical properties of
Brownian motion. It can also give a powerful numerical method for generating
the Brownian motion paths that are required in computer simulation.

3 In short about the Markov process in the gene-
ralized sense

A Markov process can be defined as follows:

Definition 31 A Markov process is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K,Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the probability
space (Ω,K,Pa).

But it is not difficult to observe that a definition of a Markov process as in
Definition 31 not correspond to many processes that are of a real interest. For
this reason it is useful to obtain an extension of this notion. Such an extended
notion has been proposed by K. Itô ([6]) and we shall refer to it shortly.

Let E be a separable Banach space with real coefficients and norm || · || and
let also L(E,E) be the space of all bounded linear operators E −→ E. It can
be observed that L(E,E) is a linear space.
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Definition 32 The collection of stochastic processes

X = {Xt(ω) ≡ ω(t) ∈ S, t ∈ T, ω ∈ (Ω,K,Pa)}a∈S

is called a ”Markov process” if the following conditions are satisfied:

1) the ”state space” S is a complete separable metric space and K(S) is a
topolo-gical σ-algebra on S;

2) the ”time internal” T = [0,∞);
3) the ”space of paths” Ω is the space of all right continuous functions T −→ S

and K is the σ-algebra K[Xt : t ∈ T ] on Ω;
4) the probability law of the path starting at a, Pa(H), is a probability measure

on (Ω,K) for every a ∈ S which satisfy the following conditions:

4a) Pa(H) is K(S)-measurable in a for every H ∈ K;
4b) Pa(X0 = a) = 1;
4c) Pa(Xt1 ∈ E1, · · · , Xtn ∈ En) =∫

. . .

∫
ai∈Ei

Pa(Xt1 ∈ da1)Pa1(Xt2−t1 ∈ da2) . . .

. . . Pan−1(Xtn−tn−1 ∈ dan) for 0 < t1 < t2 < . . . < tn.

According to Definition 32, X will be referred as a Markov process in the
generalized sense.

Now let X be a Markov process in a generalized sense and let us denote
by B(S) the space of all bounded real K(S)-measurable functions. Also let us
consider a function f ∈ B(S).

It is supposed that

Ea

( ∞∫
0

|f(Xt)|dt
)

(6)

is bounded in a. Therefore

Uf(a) = Ea

( ∞∫
0

f(Xt)dt

)
(7)

is well-defined and is a bounded K(S)-measurable function of a ∈ S.
The Uf is called the potential of f with respect to X. Having in view that

Uf = limα↓0Rαf , it is reasonable to write R0 instead of U . Based on this fact,
Rαf will be called the potential of order α of f .

Remark 1. It is useful to retain that Rαf ∈ B(S) for α > 0; and generally
f ∈ B(S) while R0f(= Uf) ∈ B(S) under the condition (6).

Now the name potential is justified by the following theorem on the 3-
dimensional Brownian motion
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Theorem 31 Let X be the 3-dimensional Brownian motion. If f ∈ B(S) has
compact support, then f satisfies (6) and

Uf(a) =
1

2π

∫
R3

f(b)db

|b− a|
=

1

2π
×Newtonian potential of t. (8)

Let us denote by D a bounded domain in Rn, n ≥ 1.

Definition 33 A function g is called ”harmonic” in D if g is C∞ in D and
if ∆g = 0 (where C∞ is the class of functions differentiable infinitely many
times).

Now let f be a continuous function defined on the boundary ∂D and let us
denote by X a k-dimensional Brownian motion defined as follows

Definition 34 The k-dimensional Brownian motion is defined on S = Rk by
the equality

pt(a, db) = (2πt)−
k
2 e−

|b−a|2
2t db = Nt(b− a)db,

where |b− a| is the norm of b− a in Rk.

Given a k-dimensional Brownian motion X, if there exists a solution g for
the Dirichlet problem (D, f)1 , then

g(a) = Ea(f(Xλ)), (9)

where λ ≡ λD = exit time from D (that is to say λD = inf{t > 0 : Xt 6∈ D},
the hitting time of DC).

In this context an interesting result is given in the following theorem

Theorem 32 If D is a bounded domain and g is a solution of the Dirichlet
problem (D, f), then

g(a) = Ea(f(Xλ))

where a ∈ D and λ = λD.

On the other hand, the Dirichlet problem (D, f) has a solution if ∂D is
smooth as it is prooved in the following theorem

Theorem 33 If ∂D is smooth, then

g(a) = Ea(f(Xλ)),

where λ = λD = exit time fromD, is the solution of the Dirichlet problem (D,
f).

Note 31 The expression ”∂D is smooth” means that ∂D has a unic tangent
plane at each point x of ∂D and the outward unit normal of the tangent plane
at x moves continously with x.

1The Dirichlet problem (D, f) is to find a continuous function g = gD,f on the closure

D ≡ D ∪ ∂D such that g is harmonic in D and g = f ◦ g ∂D.



350 G. V. Orman and I. Radomir

4 A general survey of some special connected
studies

Bachélier was unable to obtain a clear picture of the Brownian motion and
his ideas were unappreciated at that time. This because a precise definition
of the Brownian motion involves a measure on the path space, and it was not
until 1909 when É. Borel published his classical memoir on Bernoulli trials (Les
probabilités dénombrables et leurs applications arithmétique Rend. Circ. Mat.
Palermo 27, 1909, 247-271.

As soon as the ideas of Borel, Lebesgue and Daniell appeared, it was possible
to put the Brownian motion on a firm mathematical foundation and this was
achived by N. Wiener in 1923 (Differential space, J. Math. Phis. 2,1923, 131-
174).

Many researchers were fascinated by the great beauty of the theory of Brow-
nian motion and many results have been obtained in the last decades. As for
example, among other things, in Diffusion processes and their sample paths by
K. Itô and H.P. McKean, Jr., in Theory and applications of stochastic differen-
tial equations by Z. Schuss, or in Stochastic approximation by M.T. Wasan as
in Stochastic calculus and its applications to some problems in finance by J.M.
Steele. In this context one can consider also our book Aspects of convergence
and approximation in random systems analysis.

As we have already emphasized a rigorous definition and study of (mathema-
tical) Brownian motion requires measure theory.

Consider the space of continuous path w : t ∈ [0,+∞)→ R1 with coordi-
nates x(t) = w(t) and let β be the smallest Borel algebra of subsets B of this
path space which includes all the simple events

B = (w : a ≤ x(t) < b), (t ≥ 0, a < b).

Wiener established the existence of non-negative Borel measures Pa(B), (a ∈
R1, B ∈ β) for which (4) holds. Among other things, this result attaches a
precise meaning to Bachélier’s statement that the Brownian path is continuous.

Paul Lévy (Sur certain processus stochastiques homogènes, Compositio Math.
7, 1939, pp. 283-339) found another construction of the Brownian motion and
also gave a profound description of the fine structure of the individual Brownian
path2 .

Lévy’s results with several complements due to D.B. Ray (Sojourn times
of a diffusion process, IJM 7, 1963, 615-630) and K. Itô & H.P. McKean Jr.
(Diffusion processes and their Sample Path, Springer-Verlag Berlin heidelberg,
1956) are of a special attention to the standard Brownian local time (la measure
du voisinage of P. Lévy):

τ(t, a) = limb↓a
measure(s : a ≤ x(s) < b, s ≤ t)

2(b− a)
. (10)

Given a Sturm-Liouville operator

D(c2/2)D2 + c1D, c2 > 0

2P. Lévy, Processus stochastiques et mouvement brownien, Paris, 1948
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on the line, the source (Green) function p = p(t, a, b) of the problem

∂u

∂t
= Du, t > 0 (11)

share with the Gauss kernel g of (2) the properties:
(a) 0 ≤ p
(b)

∫
R1 p(t, a, b)db = 1

(c) p(t, a, b) =
∫
R1 p(t− s, a, c)p(s, c, b)dc, t > s > 0.

Soon after the publication of Wiener’s monograph (Generalized harmonic
ana-lysis, Acta Math. 5, 1930, 117-258), the associated stochastic motions
(diffusions) analogous to the Brownian motion (D = D2/2) made their debut.
At a later date (1946) K. Itô (On a stochastic integral equation, Proc. Japan
acad. 22, 1946, 32-35) proved that if

|c1(b)− c1(a)|+ |
√
c2(b)−

√
c2(a)| < constant× |b− a|, (12)

then the motion associated with

D = (c2/2)D2 + c1D

is identical in law to the ”continuous” solution of

a(t) = a(0) +

∫ t

0

c1(a)ds+

∫ t

0

√
c2(a)db (13)

where b is a standard Brownian motion.
W. Feller took to lead in the next development. Given a Markovian motion

with sample paths w : t→ x(t) and probabilities Pa(B) on a linear interval Q,
the operators

Ht : f →
∫
Pa[x(t) ∈ db]f(b) (14)

constitute a semi-group :

Ht = Ht−sHs, t ≥ s (15)

and as E. Hille (Represenation of one-parameter semi-groups of linear tansfor-
mations, PNAS 28, 1942, 175-178) and K. Yosida (On the differentiability and
the representation of one-parameter semi-group of linear operators, J. Math.
Soc. Japan 1, 1948, 15-21) proved,

Ht = etD, t > 0 (16)

with a suitable interpretation of the exponential, where D is the so-called
generator.

We mention again the name of D. Ray to emphasize that he proved (Sta-
tionary Markov processes with continuos path, TAMS, 82, 1956, pp. 452-493)
that if the motion is strict Markov (i.e. if it starts afresh at certain stochas-
tic (Markov) times including that passage times ma = min(t : x(t) = a), etc.),
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then the so-called generator D is local if and only if the motion has continuous
sample paths, substantiating a conjecture of W. Feller.

Then by combining this with some other Feller’s papers as

• W. Feller, The paraboloc differential equations and the associated semi-
groups of tansformaions, AM 55, 1952, 468-519;
• W. Feller, The general diffusion operator and positivity preserving semi-

groups in one dimension, AM 60, 1954, 417-436;
• W. Feller, On second order differential operators, AM 61, 1955, 90-105;
•W. Feller, Generalized second order differential operators and their lateral

conditions, IJM 1, 1957, 456-504,

it is implied that the generator of a strict Markovian motion with continuous
paths (diffusion) can be expressed as a differential operator

(Du)(a) = lim
b↓a

u+(b)− u+(a)

m(a, b)
, (17)

where m is a non-negative Borel measure positive on open intervals and, with
a change of scale

u+(a) = lim
b↓a

(b− a)−1 [u(b)− u(a)],

except of certain singular points where D degenerates to a differential operator
of degreee ≤ 1.

Finally we remark that E.B. Dynkin (Continous one-dimensional Markov
processes, Dokl. Akad. Nauk SSSR, 105, 1955, 405-408) also arrived at the
idea of a stict Markov process. He derived an elegant formula for D and used
it to make a simple (proba-bilistic) proof of Feller’s expression for D.

At the same time we consider that the papers of R. Blumenthal - An ex-
tended Markov property, TAMS 85, 1957, 52-72, and G. Hunt - Some theorems
concerning Brownian motion, TAMS 81, 1956, 294-319, as well as the mono-
graphs of E.B. Dynkin - Principles of the theory of Markov random processes,
Moskow-Leningrad, 1959; and Markov processes, Moskow, 1963, must also to
be mentioned in such a connection.q

Remark 2. Many other details regarding to the topics just discussed, proofs
and some related problems can be found in [6], [5], [1], [4], [21], [10], [22], [9],
[15], [13].
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