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Abstract. In a recent paper, a modified randomized Fibonacci model was presented,
assuming that the number of direct offsprings of each ancestor is a Bernoulli random
variable. In this work a question posted in the referred paper on the modified ran-
domized Fibonacci model is answered and, in addition, the model is studied from a
discrete dynamical system approach. In particular, the local qualitative properties of
the unique bifurcation point that emerges in the unit interval in the Randomized Fi-
bonacci model are presented. The work ends with a study of the long-term behaviour
of a multi species ruled by the modified randomized Fibonacci model.
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1 Introduction

In a groundbreaking paper by Brilhante, Gomes and Pestana [5], the authors
used branching process to introduced a more realistic Fibonacci-type model.
The idea is to include in the classical Fibonacci model the effects of some ran-
dom phenomena that occur naturally in life, and that limit population growth,
as limited resources, existence of predators, of illnesses, among others. These
phenomena are not considered in the original Fibonacci model that allows a
population to grow without limits, since its members never die and never stop
to reproduce themselves.

In the above mentioned work, the authors follow the idea that each ances-
tor can produce direct offspring only in the first two consecutive reproducing
periods. Starting with only one ancestor, single or couple (according to the
reproduction characteristics of the species), in each of the two initial reproduc-
ing periods each unit produces X _ Bernoulli(p) offspring, with p ∈ (0, 1),
and is removed from the process after the second reproduction. Notice that
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it is assumed that each offspring becomes an ancestor in the following step,
behaving exactly in the same fashion.

In the following, Z1 represents the number of units of the population in the
instant when the initial ancestor is removed from it (this moment will be called
the first step of the process):

Z1 =

{
0 1 2 3

(1− p)2 p (1− p) (2− p) 2p2 (1− p) p3 (1)

In the second step of the process, the number of units of the population,
Z2, is given by

Z2 =

Z1∑
k=1

Z
(k)
1 ,

where Z
(k)
1 is the number of the direct offspring of the kth unit of the population

of the first step of the process, minus one, since, once more, this unit is removed
from the process (notice that if Z1 is null, then Z2 is also null). Here we admit

that the random variables Z
(k)
1 , k = 1, 2, ..., are independent and identically

distributed (iid), and independent from Z1. In the nth step, the number of
units of the population is given by

Zn =

Z1∑
k=1

Z
(k)
n−1,

where Z
(k)
n−1 is the number of the offspring of the kth unit of the population of

the first step of the process at the (n− 1)th step, minus the ancestors of the

previous steps. Again, the random variables Z
(k)
n−1, k = 1, 2, ..., are iid, and

independent from Z1. The probability generating function (pgf) of Z1 is given
by, for x ∈ R,

G (x) = G1 (x) = E
(
xZ1
)

= (1−p)2+p(1−p)(2−p)x+2p2(1−p)x2+p3x3, (2)

and the pgf of Zn is given by

Gn (x) = E
(
xZn

)
= E

(
x
∑Z1

k=1 Z
(k)
n−1

)
=

3∑
i=0

E
(
x
∑Z1

k=1 Z
(k)
n−1

∣∣∣Z1 = i
)
P (Z1 = i)

=

3∑
i=0

[
i∏

k=1

E
(
xZ

(k)
n−1

)]
P (Z1 = i) =

3∑
i=0

[
i∏

k=1

Gn−1 (x)

]
P (Z1 = i)

=

3∑
i=0

[Gn−1 (x)]
i
P (Z1 = i) ,

= G
1
(Gn−1 (x)),

i.e.,
Gn (x) = G

1
(Gn−1 (x)), n = 2, 3, ..., (3)
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which means that the function Gn is recursively defined having as initial con-
dition (2). On the other hand, the probability that the population is extinct
at some step n = 1, 2, ... is given by

xn = P (Zn = 0) = Gn (0) .

Using (2) we obtain, for n = 2, 3, ...,

xn = G1 (xn−1) , (4)

a recursive relation that determines xn, having in mind that x1 = (1− p)2
∈ (0, 1) (cf. expression (1)). Following Feller’s argument in [6], notice that the
function G1 is strictly increasing and therefore x1 < x2 < x3 < .... On the other
hand, if x ∈ [0, 1] then G1 (x) ∈ [0, 1], which means that there exists a limit
x = limn→+∞ xn such that x ≤ 1 and, from (3), that

x = G
1

(x) .

At the long range, the population will become extinct with probability x, a
fixed point of G1 .

The expected size of the population at the nth step (n = 2, 3, ...) is given
by G′n (1) and, from (4),

E (Zn) = G
′

n (1) = G
′

1
(Gn−1 (1))G

′

n−1 (1) .

Since

G1 (1) = (1− p)2 + p(1− p)(2− p) + 2p2(1− p) + p3 = 1,

then Gn−1 (1) = 1. Setting µ = G′1 (1) we obtain

G
′

n (1) = µG
′

n−1 (1)

and, consequently, the expected size of the population at the nth step, n =
1, 2, ..., is given by

E (Zn) = µn,

with

µ = G
′

1 (1) = p(1− p)(2− p) + 4p2(1− p) + 3p3 = p (p+ 2) .

This means that when µ < 1, the expected size of the population converges
to zero, and when µ > 1, the expected size of the population converges to
infinity, as n grows . Since p ∈ (0, 1), p (p+ 2) < 1 ⇒ p ∈

(
0,
√

2− 1
)

and

p (p+ 2) > 1⇒ p ∈
(√

2− 1, 1
)
.

When µ = 1, i.e., when p =
√

2 − 1, we have a special case that needs a
deep attention from a discrete dynamical system point of view. To do so, in
the next two sections some basic but powerful tools that allow us to know the
dynamics in this specific value of p will be presented. The expected size of the
population is, in this case, 1.
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2 Local stability of the modified Fibonacci model: a
discrete dynamical system approach

The original problem presented by Leonardo Pisano, better known as Fi-
bonacci, in 1202 in the book “Liber Abaci” [12], is usually found in the books
on this area of difference equations. The Fibonacci model has motived many
studies, some of which include variants of the original problem, such as the
previous cited work of the area of statistics. Many other variants can be found
also in the area of pure discrete dynamical systems (cf., e.g., [9]).

In this section we study the modified Fibonacci model defined in the pre-
vious section from a discrete dynamical system point of view. At the same
time we provide a review of the basic results in this field in order to clarify the
readers that are not familiar with these.

Let us consider the difference equation given by

xn+1 = G (xn) (5)

with the map G given by (2), i.e.,

xn+1 = (1− p)2 + p(1− p)(2− p)xn + 2p2(1− p)x2n + p3x3n, (6)

xn ≥ 0 for n = 0, 1, 2, 3, . . . . The range of the parameter p is here extended to
the positive real numbers, p > 0 (instead of having p ∈ (0, 1)).

Consider an interval I ⊆ R and a map f : I → I. A point x∗ ∈ R is said to
be a fixed point (or equilibrium point) of f if f(x∗) = x∗, and given x0 ∈ R , we
define its orbitO(x0) as the set of pointsO(x0) = {x0, f(x0), f2(x0), f3(x0), . . .},
where f2 = f ◦ f, f3 = f ◦ f ◦ f , . . .. One of the main objectives of the the-
ory of discrete dynamical systems and, in particular, of the stability theory,
is the study of the behavior of orbits near fixed points, i.e., the behavior of
solutions of difference equations when the starting points are near equilibrium
points. Hence, a basic definition in this field is needed. Let N denote the set
of nonnegative integers.

Definition 1 (Local stability). Let f : I → I be a map and x∗ be a fixed
point of f , where I is an interval of real numbers. Then

1. x∗ is said to be locally stable if for any ε > 0 there exits δ > 0 such that
for all x0 ∈ I with |x0 − x∗| < δ we have |fn(x0) − x∗| < ε for all n ∈ N.
Otherwise, the fixed point x∗ will be called unstable.

2. x∗ is said to be attracting if there exists η > 0 such that |x0 − x∗| < η
implies lim

n→∞
fn(x0) = x∗.

3. x∗ is said to be locally asymptotically stable if it is both stable and at-
tracting. If in the previous item η = ∞, then x∗ is said to be globally
asymptotically stable.

One of the most effective graphical iteration methods to depict stability of
fixed points is the cobweb diagram (also known as stair-step diagram). For
more details about the notions of stability and the exploration of concrete
examples using cobweb diagrams we refer two works of Elaydi, [2] and [3].



Chaotic Modeling and Simulation (CMSIM) 4: 445–458, 2016 449

However, cobweb diagrams are not the most efficient tool to study local
stability. There exists a simple but powerful criterion for knowing the local
stability of fixed points. We may divide the fixed points into two categories:
hyperbolic and nonhyperbolic. A fixed point x∗ of a map f is said to be hy-
perbolic if |f ′(x∗)| 6= 1. Otherwise, it is nonhyperbolic. The following theorem
is well known in the theory of discrete dynamical systems and may be found
in any book on discrete dynamical systems.

Theorem 1 ([3], page 25). Let x∗ be a hyperbolic fixed point of a map f ,
where f is continuous differentiable at x∗. The following statements hold true:

1. If |f ′(x∗)| < 1, then x∗ is locally asymptotically stable.
2. If |f ′(x∗)| > 1, then x∗ is unstable.

The stability criteria for nonhyperbolic fixed points are more complex and
are summarized in the following theorem (for a complete classification of non-
hyperbolic fixed points and a definition of semi-stability cf. [3], pages 33-35).
Before presenting the criteria we introduce the notion of Schwarzian derivative.

Definition 2 (Schwarzian derivative). The Schwarzian derivative, Sf , of
a function f , is defined by

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

.

In particular, when f ′(x∗) = −1, we have Sf(x∗) = −f ′′′(x∗)− 3
2 [f ′′(x∗)]

2
.

Theorem 2 ([3], pages 28-30). Let x∗ be a fixed point of a map f and f ′,
f ′′ and f ′′′ be continuous at x∗.

1. Let f ′(x∗) = 1.

(a) If f ′′(x∗) > 0, then x∗ is unstable but semi-stable from the left.
(b) If f ′′(x∗) < 0, then x∗ is unstable but semi-stable from the right.
(c) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable.
(d) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is locally asymptotically stable.

2. Let f ′(x∗) = −1.

(a) If Sf(x∗) < 0, then x∗ is locally asymptotically stable.
(b) If Sf(x∗) > 0, then x∗ is unstable.

Now, let us turn our attention to the difference equation given by (5). The
fixed points of G are the solutions of the equation x = G (x) , i.e., for p > 0

x∗1 = 1,

x∗2 = x∗2 (p) =
p (p− 2) +

√
p (4− 4p+ p3)

2p2
,

x∗3 = x∗3 (p) =
p (p− 2)−

√
p (4− 4p+ p3)

2p2
.
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The domain of G has been restricted to (0,+∞) and x∗3 < 0. As a consequence,
only x∗1 and x∗2 will be considered.

The derivative of the map G is given by

G′(x) = p(1− p)(2− p) + 4p2(1− p)x+ 3p3x2.

Since G′(x∗1) = p(2 + p), it follows that the fixed point x∗1 = 1 is locally asymp-
totically stable when |p(2 + p)| < 1, or equivalently p ∈ (0,

√
2 − 1). On the

other hand, when p >
√

2− 1, x∗1 = 1 is unstable. The case when p =
√

2− 1
will be studied below.

Now let us study the local stability of the fixed point x∗2. A direct compu-
tation leads to

G′ (x∗2) =
p3 − 2

√
p3 − 4p+ 4

√
p−

√
p3 − 4p+ 4p3/2 − 4p+ 6

2
,

and shows that |G′(x∗2)| < 1 if and only if
√

2− 1 < p <
√
17−1
2 . Notice that x∗2

is unstable if p ∈
(
0,
√

2− 1
)
∪
(√

17−1
2 ,+∞

)
.

Now we will study the special case when p =
√

2 − 1. Notice that for
this value of the parameter we have x∗ = x∗1 = x∗2 = 1, G′ (x∗) = 1 and
G′′ (x∗) = 2

(√
2− 1

)
> 0. Consequently, by Theorem 2 the fixed point x∗

is semi-stable from the left. This dynamics is clearly shown in the cobweb
diagram presented in Figure 1.

It is important to deeply understand the behavior of the system near x∗ = 1
for values of parameter p in (

√
2 − 1 − δ,

√
2 − 1 + δ), with small δ > 0. For

p <
√

2 − 1 there are two fixed points in the system x∗1 and x∗2 (p), the first
of which is locally asymptotically stable, while the second one is unstable.
For p >

√
2 − 1 , x∗1 and x∗2 (p) are still fixed points, but have exchanged

their stability situation: x∗1 is now unstable and x∗2 (p) is locally asymptotically
stable. When p =

√
2−1 the two fixed points (locally asymptotically stable and

unstable) “collide”, forming a unique fixed point, and this is the only time where
this happens, for there will be no more unique fixed points. This behavior is
known as bifurcation in the discrete dynamical system. For a general reference
in the theory of bifurcation of fixed points cf. Kuznetsov’s book [8].

The main types of bifurcation are summarized in Table 1. For a classifica-
tion of nonhyperbolic fixed points of periodic maps, cf. the work by Elaydi,
Lúıs and Oliveira [4], which generalize the present study.

We will now check the type of bifurcation that occurs when p =
√

2 − 1,
i.e., in x∗ = 1. Since G′ (x∗) = 1,

∂G
∂p

(x∗) = 0,G′′(x∗) = 2
(√

2− 1
)
6= 0 and

∂2G
∂p∂x

(x∗) = 2
√

2 6= 0,

we conclude that there is a transcritical bifurcation in x∗ = 1 (at p =
√

2− 1).

At p =
√
17−1
2 we have x∗2 = x∗2

(√
17−1
2

)
= 7

16 −
1
16

√
17, G′(x∗2) = −1,

∂2G
∂p∂x

(x∗2) =
1

8

(√
2
(

1 +
√

17
)

+ 10
√

17− 3

√
34
(

1 +
√

17
)
− 14

)
6= 0
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Fig. 1. The cobweb diagram of the fixed point x∗ = 1, in the phase-space diagram,
of the map G at p =

√
2− 1. The fixed point x∗ = 1 is semi-stable from the left since

the orbit of any initial point x0 < 1 converge to x∗ = 1 while the orbit of a point x0

in the right vicinity of 1, x0 & 1, diverge from x∗ = 1.

Type of bifurcation in x∗ f ′(x∗) ∂f
∂p

(x∗) f ′′(x∗) ∂2f
∂p∂x

(x∗) f ′′′(x∗) Sf(x∗)

Saddle-node 1 6= 0 6= 0

Transcritical 1 0 6= 0 6= 0

Pichfork 1 0 0 6= 0 6= 0

Period-doubling -1 6= 0 6= 0

Table 1. The main types of bifurcation for nonhyperbolic fixed points in one-
dimensional maps.

and

SG(x∗2) =
3

8

(√
17− 9

)(
3

√
2
(

1 +
√

17
)

+ 3
√

17− 1

)
6= 0,

which means that there is period-doubling bifurcation in x∗2

(√
17−1
2

)
. The

fixed point x∗2 becomes unstable and a new locally stable 2−periodic cycle of
the equation xn+1 = g(xn) is born, i.e., the map g2 = g ◦ g has a locally
asymptotically stable fixed point. This fixed point of the composition, is in
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fact the following 2−periodic cycle of the map g{
1

2

(
−
√
p3 + 2p2 − 3p− 4

p3/2
− 1

p
+ 1

)
,

1

2

(√
p3 + 2p2 − 3p− 4

p3/2
− 1

p
+ 1

)}
.

From this point forward calculations can only be done by numerical methods.
If we do so, we will verify that this scenario of period-doubling bifurcation will
continue. This behaviour is confirmed by Sharkovsky’s theorem. Established
by Sharkovsky in 1964, cf. [10], and later translated to English by J. Tolosa
in 1995, cf. [11], this result has played a role of paramount importance in
the dynamics of one-dimensional maps. First, it is necessary to introduce the
Sharkovsky order of the positive integers, that is denoted by the symbol B and
defined in the following way:

3 B 5 B 7 B 9 B · · ·B (2n+ 1)× 20 B · · ·
3× 2 B 5× 2 B 7× 2 B 9× 2 B · · ·B (2n+ 1)× 21 B · · ·

3× 2n B 5× 2n B 7× 2n B 9× 2n B · · ·B (2n+ 1)× 2n B · · ·
· · ·B 2n B 2n−1 B · · ·B 23 B 22 B 21 B 20

Sharkovsky’s theorem can now be stated:

Theorem 3 ([11]). [Sharkovsky’s theorem] Let F : I → I be a continuous
map which has a periodic orbit of prime period k. Then for any positive integer
l that is preceded by k in the Sharkovsky’s order, kB l, there is a periodic orbit
of prime period l.

Note that Theorem 3 is a one-dimensional result and, in general, it is not
known if it holds in higher dimensions, although some particular results do
exist (cf. e.g. the work of P. Kloeden, [7]).

Solving numerically the equation G3(x∗) = x∗ when p = 1.960835 we find
that x∗ ≈ 0.489723 is one of the solutions. This implies that x∗ ≈ 0.489723
is a 3−periodic cycle of the map G. Taking the derivative of the composition
we find that

(
G3
)′

(0.489723) ≈ 0.858445 < 1. This implies that the 3−cycle
is locally asymptotically stable. Consequently, by Sharkovsky’s Theorem the
map G has periodic orbits of all periods.

There exists another way of presenting this bifurcation scenario: plotting a
bifurcation diagram in the direct product of the phase and parameter spaces,
i.e, in the (p, x)−plane, where x represents the limit values of the sequence
xn (p) defined by (5). This diagram is depicted in Figure 2 for the fixed points
and the 2−periodic orbits. The solid curves represent the regions of locally
asymptotically stability, while the dashed curves represent the regions where
instability occurs. The second bifurcation diagram presented in Figure 3 is
obtained via simulation.

3 Modified randomized Fibonacci model revisited: the
bifurcation point

In this section, the solution to an open question posted in [5] at the end of
Section 2 is given. In the cited paper the authors compare analytic solu-
tions with numerical results of the equation xn = GZ1

(xn−1), where xn is
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Fig. 2. Bifurcation of the fixed points and the appearance of 2−periodic cycles in
the (p, x)−plane. The solid lines is the region where the fixed points are locally
asymptotically stable while in the dashed curves instability occurs.

Fig. 3. The period-doubling scenario obtained via simulation.

the probability that extinction does occurs at or before the nth generation and
x1 = P (Z1 = 0) = (1− p)2. The numerical results obtained suggested that
the fixed point x∗1 = 1 at p =

√
2 − 1 is unstable and the authors observed

that this instability seemed “quite different in nature from the Feigenbaum
bifurcations”.

In order to clarify this observation, recall that in the considered randomized
Fibonacci model, X _ Bernoulli(p), with 0 < p < 1. Consequently, the map
g defined in (5) maps the unit square into itself, g : [0, 1]→ [0, 1].

From the previous section we know that the fixed point x∗ = 1 at p =
√

2−1
is semi-stable from the left (its dynamics is shown in the cobweb diagram pre-
sented in Figure 1). Moreover, it bifurcates transcritically to the second fixed
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point x∗2. Hence, in this specific point, the instability mentioned above does
not occur, since in these special points, where bifurcation occurs, stability does
exist. What happened in the cited paper was that the number of iterations used
by the authors was not enough to visualize the convergence in the bifurcation
point.

Furthermore, since p ∈ (0, 1), there are no periodic points of prime period
2 in [0, 1]. This can be seen in Figure 2 and confirmed by the following result:

Theorem 4 ([1]). Let I = [a, b] ⊆ R and f : I → I be a continuous map. If
the equation f (f (x)) = x has no roots, with the possible exception of the roots
of the equation f (x) = x , then every orbit under the map f converges to a
fixed point.

Finally, since for p ∈ (0, 1) there are no periodic points in [0, 1], it is not
possible to observe the sequence of the Feigenbaum numbers in the dynamic of
the considered randomized Fibonacci model. To observe that phenomenon, it
is necessary to have the period-doubling scenario.

4 Multi randomized Fibonacci species

In this section, the model studied in the introduction is extended to multi-
species. We will consider k ancestors from different species that can coexist in
the same habitat and do not compete for resources.

The rule will be the same as before: each ancestor can produce direct off-
spring only in the first two consecutive reproducing periods. Starting with only
one ancestor of each species, single or couple (according to the reproduction
characteristics of the species), in each of the two initial reproducing periods
each unit produces

Xi _ Bernoulli(pi), i = 0, 1, 2, . . . , k,

offspring, with pi ∈ (0, 1), and is removed from the process after the second
reproduction. Notice that it is assumed that each offspring becomes an ancestor
in the following step, behaving exactly in the same fashion.

Since there is no competition between species, a natural question arises:
what is the effect of the individual expected size in the expected size of the total
population? In other words, we know that if pi(pi + 2) < 1, i = 1, 2, . . . , k, i.e.,
pi ∈ (0,

√
2− 1), then the expected size of i species converges to zero. Now, we

want to know the region, in the in k−dimensional space (p1, p2, ..., pk), where
the expected size of the total population converges to zero.

Denote Z1 the number of units of the total population when the initial
ancestors are removed from the system and Z1,i, i = 1, 2, . . . , k, the number of
units of the individual populations when each initial ancestor is removed from
the system, i.e., for each i = 1, 2, . . . , k we have

Z1,i =

{
0 1 2 3

(1− pi)2 pi (1− pi) (2− pi) 2p2i (1− pi) p3i
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and

Z1 =

k∑
i=1

Z1,i =

{
0 1 2 .. 3k
A0 A1 A2 ... A3k

where
∑3k

i=0Ai = 1. For instance, when k = 2 the numbers Ai, i = 0, 1, ..., 6
are given by

Ai =

i∑
j=0

P (Z1,1 = j)P (Z1,2 = i− j) .

At the nth step, the number of units of the total population is given by

Zn =

k∑
i=1

Zn,i,

where Zn,i, i = 1, 2, . . . , k, is the population of the nth generation of the ith
species. Notice that the random variables Zn,i, i = 1, 2, . . . , k, are independent.
Consequently, the pgf of Zn is given by

Gn =

k∏
i=1

Gn,i,

where Gn,i is the pgf of Zn,,i that, recall, satisfies the recurvive equation (3)

Gn,i (x) = G1,i(Gn−1,i (x)), n = 2, 3, ...,

with

G1,i(x) = (1− pi)2 + pi(1− pi)(2− pi)x+ 2p2i (1− pi)x2 + p3ix
3.

The probability that the population is extinct at some step n = 1, 2, ...is
again given by

yn = P (Zn = 0) = Gn (0) =

k∏
i=1

G
n,i

(0) =

k∏
i=1

x
n,i
,

where x
n,i

is the probability that the ith species is extinct at the same step n.
But

xn,i = G
1,i

(xn−1,i) , (7)

with x1,i = (1− pi)2 ∈ (0, 1). Consequently

lim
n→+∞

yn =

k∏
i=1

lim
n→+∞

xn,i =

k∏
i=1

xi ,

with xi such that
xi = G1,i (xi) .

Naturally, if one species does not become extinct, i.e., if xi is zero for some
i ∈ {1, .., k} , then the population does not become extinct neither.
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The expected size of the population at the nth step (n = 2, 3, ...) is given
by

E (Zn) =

k∑
i=1

E (Zn,i) =

k∑
i=1

µn
i ,

with
µi = G

′

1,i (1) = pi (pi + 2) ,

i.e.,

E (Zn) =

k∑
i=1

pni (pi + 2)
n
.

Recall that pi ∈ (0, 1), pi (pi + 2) < 1 ⇒ pi ∈
(
0,
√

2− 1
)

and pi (pi + 2) >

1⇒ pi ∈
(√

2− 1, 1
)
.

Hence, the expected size of the population in long term depends the values
of pi, i = 1, 2, . . . , k. We can have:

• Extinction - in the sense that all species will eventually die, i.e., limn→+∞E(Zn) =
0;

• Exclusion - in the sense that some species will eventually die and others
will survive, i.e., limn→+∞E(Zn) = v < k;

• Coexistence - in the sense that all the k species will remain in the system,
i.e., limn→+∞E(Zn) = k;

• Expansion - in the sense that the expected size will increase without limits,
i.e., limn→+∞E(Zn) = +∞.

More specifically, the limn→+∞E(Zn) is:

• 0 if pi <
√

2− 1 for all i ∈ {1, ..., k} ;
• 1 if pi =

√
2 − 1 for some i ∈ {1, ..., k} and pj <

√
2 − 1 for all j 6= i,

j ∈ {1, ..., k};
• 2 if pi1 = pi2 =

√
2− 1 for some i1, i2 ∈ {1, ..., k} and pj <

√
2− 1 for all j

∈ {1, ..., k} \{i1, i2};
• . . .
• k if pi =

√
2− 1 for all i ∈ {1, ..., k};

• +∞ if pi >
√

2− 1 for some i ∈ {1, ..., k}.

In Figure 4, the scenarios for two species are presented in the parameter
space (p1, p2). If p1 and p2 belong to the region R1, both species will eventually
become extinct. If p1 and p2 are in region R2 there is expansion of species 1
with exclusion of species 2, while in region R3 species 2 expands with exclusion
of species 1. If p1 and p2 are on the segment l1 we verify the exclusion of species
2 while on the segment l2 species 1 will be excluded from the system. On the
point C we have the coexistence of both species. Finally, if p1 and p2 are in
the region R4 we eventually observe the expansion of both species.
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Fig. 4. Region, in the parameter space (p1, p2), where the dynamics of two individual
populations occurs.
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