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Abstract: Influence of frequency of excitation on chaotic dynamics of a 2-DoF 

mechanical system with dry friction is investigated. The analysed system consists of a 

block vibrating on a transmission belt driven by an electric motor. Stick-slip friction in a 

contact between the block and the belt introduce significant variability of load affecting 

operation of the driving system. In the naturally coupled systems, a resultant unsteady 

rotational velocity of the DC motor acts as a time varying high frequency disturbance of 

velocity of motion of the base. Bifurcational behaviour of the 2-DoF block-on-belt 

system with dry friction and its response to an irregular excitation caused by the 

disturbed velocity of motion of the base is analysed using bifurcation diagrams. 

Mathematical model of the block-on-belt system with a normal force intensification 

mechanism and the electric motor based driving system has been developed and 

numerically solved. Changes in the assumed stiffness parameter of bifurcation of the 

investigated stick-slip mechanical system with dry friction have provided some 

comparable bifurcation diagrams bringing interesting observations and conclusions. 
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1    Introduction 

Nonlinearities with their origin in backlashes, impacts, stick-slip motions, or 

interactions with a discrete control systems are present in physical systems. 

 A lot of scientific work has been done in the frame of analysis of complex 

behaviour exhibited by vibrating mechanical systems with nonlinearities [1-

8,10-15,17-19]. Methods of dynamical analysis have found their place not only 

in mechanics, but also in electronics [16] and even in biology [9]. 

 This paper takes a research on the influence of frequency of excitation on 

the possibility of appearance of chaotic dynamics in a 2-DoF mechanical system 

with friction. Time-varying frequency of excitation of moving base in the block-

on-belt model, providing the disturbed linear velocity of motion of the base, 

comes from the modelled real behaviour of the driving system installed on a 
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laboratory stand being constructed for investigation of frictional effects [1-3]. It 

makes our simulations more realistic by proving visible changes in the 

investigated system dynamics. Two mathematical models are taken into account 

in this work, i.e.: 1) a model without coupling between the mass oscillating on 

the moving base and the system driving the base; 2) a model with coupling, 

which states a kind of feedback dynamics. Results of our dynamical analysis of 

both systems are compared on bifurcation diagrams. 

 

2    Modelling of the Investigated Mechatronic System 

The investigated mechatronic system is depicted in Fig.1. It consists of three 

interconnected subsystems, such as: 1) an electric motor; 2) the transmission 

system consisting of a worm gear, conveyer belt and a pulley; 3) the body (a 

block) oscillating on the conveyer belt with a friction force intensification 

mechanism realised by single pendulum (a bracket rotating about the pivot S). 

The motor is connected to a worm gear, which by a toothed belt transmits the 

driving torque to the belt pulley. A block of mass m is connected to a fixed wall 

by the linear spring of stiffness k1 and to the pendulum body of mass M by 

means of springs of the stiffness k2 and k3. The virtual dashpots of the damping 

c1 and c2 model unknown effects of the system’s viscous damping in the 

bearings and resistance of motion in the air. 

 The linear velocity Vb of the conveyer belt (the moving base) plays the role 

of the time-varying excitation of the oscillating block, and hence, self-sustained 

vibrations of the block are observed. Detailed description of the system can be 

found in [1-3,6]. 

 

 
 

Fig. 1. Physical model of the investigated mechatronic system. 

 

The electromechanical model of the electric DC motor follows: 
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where: dot over symbols i and ω denotes the first derivative with respect to 

time, Lw – winding inductance, Rw – winding resistance, ke – constant of 

electromotive force, km – motor torque constant, iw – winding current, Uin – 

input voltage to the motor, ω – angular velocity of the rotor, Jdc – mass moment 

of inertia of the rotor, b – viscous friction coefficient, Ml – time varying torque 

loading rotor of the motor, TC – Coulomb friction force given by the formula: 
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where: Tst – static friction force, Tk – kinetic friction force.  

 Equation of motion of the belt pulley is given in the form: 
 

bpSbpbp rtTMJt )()( 2  ,             (4) 

 

where: Jbp – mass moment of inertia of the pulley, ωbp – pulley’s angular 

velocity, rbp – radius of the pulley, M2 – output torque of worm gear, TS –time-

varying friction force caused by an irregular stick-slip motion of mass m. 

 Following equations constitute the simplified model of the worm gear: 
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where: M1 and M2 – input and output torques of worm gear, ρ – a transmission 

ratio, η – efficiency of the angular velocity transmission system. 

 The total torque from the transmission system loading the motor follows: 
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 Equation of motion of the transmission system reduced to the DC motor’s 

rotor (shaft) is given: 
 

  )()()()/()()/()( 2  CSbpwmbpdc TtbtTrtikJJt  .    (7) 

 

 Equations (8)-(9) describe the dynamical behaviour of the body oscillating 

on the moving base and coupled with the normal force intensification 

mechanism created by single pendulum. The mechanism simulates behaviour of 

braking systems with intensification of friction force [1-3]. Derivation of 

equations of motion of the investigated physical system are provided in [11].  

 Two characteristic phases of movement in the examined system dynamics 

are distinguished. The “stick phase” of movement occurs when the block moves 
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with constant velocity Vb – the linear velocity of motion of the conveyer belt. If 

the static friction force reaches its maximum value and it does no longer 

compensate for the resultant force generated by springs, then the stick contact 

between the mass and the moving base is lost, hence, the “slip phase” of the 

relative motion appears. Then, the block moves with an accelerated motion that 

is opposite directed to the motion of the base until the dynamic friction force 

will compensate the resultant force of springs and inertia of the sliding body. 

 The investigated two-degrees-of-freedom mechanical system with dry 

friction is described by the two second order differential equations: 
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where: g – gravity constant, Q – resistance torque in the pivot S (see Fig. 1). 
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where: l = (3√2/4)r is the distance between the centre of rotation and the centre 

of gravity of the rotating pendulum of mass M. The parameter z1 and its first 

derivative represent internal state variables, i.e.: 111 yxz  , 111 yxz   . 

 On that basis, the friction force in the frictional contact of the block-on-belt 

model follows: 



























 1

2

2

1
1

3

2
1)( y

mg

c

r

x
y

mg

k

m

M
mgVT rrS

 , br VxV  1
 .    (11) 

 

 In accordance to [12], the experimentally verified coefficient of kinetic 

friction, which is dependent on the relative velocity Vr, is proposed as follows: 
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where: α, β and γ are the friction law parameters controlling the shape of the 

curve given by Eq. (12), and Vb = ωbprbp is the velocity of the conveyer belt. 

 
3    Simulation Results 

The mathematical model given in Sec. 2 by Eq. (7)-(12) has been translated on 

numerical procedures (virtual instruments) performed in LabVIEW. Two cases 

of the presented model were tested. 
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 First case. In the simplified model, a not disturbed (constant) angular 

velocity of the belt pulley is assumed. Equations (1)-(4) and (7) describing the 

electric motor and the transmission system’s dynamics are omitted. 

 Second case. Full model with the transmission system, of which dynamics 

disturbs linear velocity of the base in the block-on-belt model is assumed. 

 To observe differences between the simplified and full model’s dynamics, 

their phase plane trajectories for small changes in the parameter k3 were 

investigated. The control bifurcation parameter was changing from 72 to 96 

[N/m] with a step of 0.001 (see diagrams in Fig. 2 and 3). During a 40 seconds 

simulation, the storage of time series, corresponding to each bifurcation 

parameter, was started after 15 seconds to omit any transitional motion. 

 Bifurcation diagrams shown in Fig. 2-10 exhibit relations between the 

coordinate x1 of Poincaré map and the bifurcation parameter k3. According to 

the assumed definition of the map, a point of phase space trajectory appears on 

the Poincaré map when acceleration of motion of mass m crosses 0 by changing 

its value from positive to negative. 

  

 
 

Fig. 2. Bifurcation diagram for the simplified model, where ]97,72[3 k  

(velocity of the base is not disturbed). 

 

 One observes that both models (in the first and the second case mentioned 

above) demonstrate significant changes in their dynamical behaviour in relation 

to changes in the control parameter. The main difference between the two 

assumed cases of complexity of the system are visible for the particular values 

of the bifurcation parameter k3. In comparison to the simplified model, in the 

full dynamical system with the disturbed velocity of the base, the first period 

doublings of motion appear at lower values of control parameter. In this case, it 

can be observed that the regions of possible chaotic behaviour are wider.  
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Fig. 3. Bifurcation diagram for the full model, where ]97,72[3 k  

(velocity of the base is disturbed by the driving system). 

 

 

 
 

Fig. 4. Bifurcation diagrams shown in Fig. 2 (blue) and 3 (red) in the same 

coordinate system. 
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 In Fig. 4, presenting two overlapped bifurcation diagrams for both analysed 

cases of the system’s complexity, one observes, that the regions of possible 

chaotic behaviour end almost at the same threshold of k3 = 95.1. 

 

 
 

Fig. 5. Bifurcation diagram for the simplified model, where ]88,82[3 k  

(velocity of the base is not disturbed by the driving system). 

 

 

 
 

Fig. 6. Bifurcation diagram for the full model, where ]88,82[3 k  

(velocity of the base is disturbed by the driving system). 
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Fig. 7. Bifurcation diagram for the simplified model, where ]92,86[3 k  

(velocity of the base is not disturbed by the driving system). 

 

 

 
 

Fig. 8. Bifurcation diagram for the full model, where ]92,86[3 k  

(velocity of the base is disturbed by the driving system). 
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Fig. 9. Bifurcation diagram for the simplified model, where ]96,94[3 k  

(velocity of the base is not disturbed by the driving system). 

 

 

 
 

Fig. 10. Bifurcation diagram for the full model, where ]96,94[3 k  

(velocity of the base is disturbed by the driving system). 
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(a) 

 
(b) 

 

Fig. 11. Stick-slip trajectory of mass m and its Poincaré map on the phase plane 

)( 11 xx marked by red dots of the simplified (a) and full model (b), k3 = 87.968.  

 

 The two different solutions presented in Fig 11., i.e.: a periodic (a) and 

chaotic (b) obtained for the same value of parameter k3 confirm influence of the 

disturbed velocity of the base on the behaviour of mass m on the moving base. 
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4    Conclusions 

An influence of frequency of excitation on the dynamics of a two-degrees-of-

freedom mechanical system with dry friction has been qualitatively investigated. 

Bifurcational behaviour of the 2-DoF system with the stick-slip effect and its 

response to an irregular kind of excitation caused by a disturbed velocity of 

motion of the base in the block-on-belt model was analysed by means of 

bifurcation diagrams. A mathematical model of the block-on-belt system with a 

normal force intensification mechanism and the DC motor based driving system 

with worm gear has been mathematically developed and virtualized. Although 

both investigated models behave similarly, exhibiting comparable changes in 

their dynamical behaviour, the influence of the disturbed velocity of motion of 

the base in the block-on-belt model is clearly visible. It has been shown that 

higher frequency vibrations of motors affect the driven systems dynamics. 

 Periodic windows on the bifurcation diagrams of the two analysed models 

(a simplified one and the full with the described coupling of electric drive with 

the driven block-on-belt transmission system) are placed in different intervals of 

control parameter, as well as the bifurcation branches are a bit more scattered. 

 As it has been observed, more scattered branches make the period-doubling 

bifurcations, leading to some less visible quasiperiodic or chaotic solutions, 

more blurred. 

 Basing on our results of numerical simulations presented in this work, it can 

be concluded, that by incorporating the dynamics of the transmission system 

into the block-on-belt model, even in a very basic form, a considerable impact 

of the source of additional high frequency oscillations on its dynamical 

behaviour has been proved. Therefore, if one attempts to investigate dynamics 

of any real system with friction, then many ideal traditionally investigated 

block-on-belt models with an assumption of constant velocity of the base may 

not properly model the real complex phenomena appearing in contact dynamics 

of sliding connections existing in mechatronic systems.  
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