
Chaotic Modeling and Simulation (CMSIM) 2: 115–124, 2020

Dynamical analysis of a fractional SIR model
with treatment and quarantine

Ricardo Almeida

Center for Research and Development in Mathematics and Applications (CIDMA)
Department of Mathematics, University of Aveiro, 3810–193 Aveiro, Portugal
(E-mail: ricardo.almeida@ua.pt)

Abstract. We propose a fractional SIR model with treatment and quarantine poli-
cies, whose dynamics is described by the Caputo fractional derivative. Local stability
of the equilibrium points is studied, and the threshold value R0 is found. Finally,
some numerical simulations are presented for different values of the parameters.
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1 Introduction

Traditionally, most of the mathematical models that describe the dynamics
of direct transmission diseases are given by a system of differential equations.
One of the concerns of epidemiological models is to use appropriate methods to
study the occurrence of diseases. From this perspective, epidemiology currently
uses mathematical modeling to describe the complex interactions between living
beings. The most widely used models for describing transmissible diseases are
those of the compartmental type, where each individual in a closed community
is labeled by his state of health in relation to some illness. In this way, the
individuals are located in compartments, each compartment representing the
state of the development of the disease for every single individual. The most
simple compartment model is composed of three compartments, labeled by the
letters S, I and R. The compartment S includes all individuals who may
become infected. When an individual of class S has contact with an infectious
individual and becomes itself infected, he moves to class I. After the infectivity
period, the individual will belong to the class of the Recovered R, staying for
some time or permanently immune to the disease. More complex models can
be used, for example, one can include a class of individuals that possess natural
immunity to the disease or are infected, but can not spread it yet. In 1927,
Kermack and McKendrick proposed the classical SIR model [14], which played a
major influence on the development of mathematical models for disease spread.
According to this model, all individuals are equally susceptible to the disease,
and a complete immunity is conferred after the infection. Since then, numerous
works have come to light, as the model assumptions are modified. For example,
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we can consider the SIR model [4,20,23], the SIS model [11,25], the SIRS model
[15,19], the SEIR model [16,17], the MSEIR model [13], among others.

More recently, with the advancement of fractional calculus, a new approach
is appearing by replacing ordinary derivatives with fractional derivatives. There
are two important reasons to consider fractional derivatives in epidemiological
models. First, fractional derivatives are nonlocal operators and may be more
suitable for long-time behaviour studies. Secondly, by considering the order
of the derivative an arbitrary real α > 0, not necessarily an integer number,
we can model more efficiently real data to the theoretical model. To mention
a few works on epidemiological fractional models, we refer the reader to [1,5–
8,10,21,24].

For the reader’s convenience, we start with a short exposition on fractional
calculus [12,22]. Let α > 0 be a real, n = [α] + 1 an integer, and x : [a, b]→ R
an integrable function. The Riemann–Liouvile fractional integral of x of order
α is given by the expression

Iαa+x(t) =
1

Γ (α)

∫ t

a

(t− τ)α−1x(τ)dτ, t > a,

and the Riemann–Liouville fractional derivative of x of order α is defined as

Dα
a+x(t) =

(
d

dt

)n
In−αa+ x(t), t > a.

Another important concept is the Caputo fractional derivative, given by

CDα
a+x(t) = Dα

a+

[
x(t)−

n−1∑
k=0

x(k)(a)

k!
(t− a)k

]
, t > a.

From the definition it is clear that the Riemann–Liouville fractional derivative
of a constant function is not zero, while CDα

a+K = 0, where K is a real number.

It is worth to mention that, if α ∈ N, then CDα
a+x(t) = x(α)(t), and if x is of

class Cn, then

CDα
a+x(t) =

1

Γ (n− α)

∫ t

a

(t− τ)n−α−1x(n)(τ)dτ, t > a.

Thus, in opposite to integer-order calculus, fractional derivatives are non-local
operators and, thus, contain memory.

The outline of the paper is the following. In Section 2, we present our
proposed model, given by a system of fractional differential equations. Then,
in Section 3, we prove the existence of nonnegative solutions to the system. The
equilibrium points and basic reproduction number R0 are considered in Section
4. We end by presenting some examples in final Section 5, with numerical
simulations.

2 Model formulation

In this work, we begin with a SIR model (Susceptible, Infected and Recov-
ered), adding, however, more classes. Once infected, some patients will receive
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treatment and move to a new class, which we denominate by H compartment.
Others infected wont receive any treatment and will be quarantined during
the period of infection, labeled as Q class. The model that we propose in our
work is described by a system of fractional differential equations (1) of order
α ∈ (0, 1): 

CDα
0+s(t) = µα − βαi(t)s(t)− µαs(t)

CDα
0+i(t) = βαi(t)s(t)− (εα + µα)i(t)

CDα
0+h(t) = uεαi(t)− (τα + µα)h(t)

CDα
0+q(t) = (1− u)εαi(t)− (γα + µα)q(t)

CDα
0+r(t) = ταh(t) + γαq(t)− µαr(t),

(1)

with the initial conditions

s(0) = s0, i(0) = i0, h(0) = h0, q(0) = q0, r(0) = r0, (2)

with s0, i0, h0, q0, r0 ∈ R+
0 . The variables s, i, h, q and r represent the fraction

of the total population in each of the five categories, s = S/N , i = I/N ,
h = H/N , q = Q/N and r = R/N , where N denotes the population size. Since
CDα

0+N(t) = 0, the population size is constant along time. We assume that

the fractional derivatives CDα
0+s,

CDα
0+i,

CDα
0+h, CDα

0+q, and CDα
0+r exist

and are continuous at every point t ≥ 0 (for example, it is enough to assume
that functions s, i, h, q, and r are of class C1). The parameters of the model
are displayed in Table 1, and the disease transmission dynamics is displayed in
Figure 1.

β disease transmission rate

ε time it takes to decide who will receive treatment

τ rate of recovery from the disease due to treatment

γ natural rate of recovery from the disease

u percentage of those infected who will receive treatment

Table 1: Parameters of the model.

Fig. 1: Disease transmission dynamics.

On one hand, we are interested in reducing the costs of treatment, that is, the
parameter u. At the same time, we want to prevent a large part of the population
from being quarantined and infected for too long. These issues may be approached
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as an optimal control problem. We intend to find the optimal value u that minimizes
the functional

J(u) = ωu+

∫ T

0

q(t) dt,

subject to the system (1).

3 Existence of non-negative solutions

In this section we prove the existence and uniqueness of the solution for system (1).
Also, we prove that the solution of the system is non-negative.

Theorem 1. There exists a unique solution for problem (1).

Proof. The existence of solution follows immediately from [18, Theorem 3.1] and the
uniqueness from [18, Remark 3.2 ].

Next, we prove the non-negativity of solution. First, we need the following two
lemmas.

Lemma 1. [10] Let x be a function such that x and CDα
a+x are continuous, for

α ∈ (0, 1]. Then, for all t ∈ (a, b], there exists some c ∈ (a, t) satisfying the condition

x(t) = x(a) +
1

Γ (α+ 1)
CDα

a+x(c)(t− a)α.

Lemma 2. [3] Given a real α ∈ (0, 1), an integer m ∈ N, and consider the vectors
X = (x1, . . . , xm) and Y = (y1, . . . , ym). For each i = 1, . . . ,m, let fi : [a, b]×Rm →
R be a continuous function and Lipschtiz with respect to the second component, that
is,

|fi(t,X)− fi(t, Y )| ≤ Li‖X − Y ‖.
Let us denote f = (f1, . . . , fm), and consider the two fractional differential equations

CDα
a+X(t) = f(t,X) +

1

k
and CDα

a+X(t) = f(t,X), (3)

with the same initial conditions, where k is a positive integer. If kX
? = (kx

∗
1, . . . ,k x

∗
m)

and X? = (x∗1, . . . , x
∗
m) are the solutions of (3), respectively, then kX

?(t) → X?(t)
as k goes to infinity, for all t ∈ [a, b].

Theorem 2. The solution of system (1) is non-negative.

Proof. Consider the following system with an extra parameter k ∈ N:

CDα
0+s(t) = µα − βαi(t)s(t)− µαs(t) + 1/k

CDα
0+i(t) = βαi(t)s(t)− (εα + µα)i(t) + 1/k

CDα
0+h(t) = uεαi(t)− (τα + µα)h(t) + 1/k

CDα
0+q(t) = (1− u)εαi(t)− (γα + µα)q(t) + 1/k

CDα
0+r(t) = ταh(t) + γαq(t)− µαr(t) + 1/k.

(4)

First, we prove that solution (s?k(t), i?k(t), h?k(t), q?k(t), r?k(t)) of (4), with the initial
conditions (2), is non-negative. Suppose, by reductio ad absurdum, that one of the
functions is negative at some point t > 0, and let

t0 = inf{t > 0 | (s?k(t), i?k(t), h?k(t), q?k(t), r?k(t)) /∈ (R+
0 )5}.
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Under this hypothesis, at t = t0, we have that

(s?k(t0), i?k(t0), h?k(t0), q?k(t0), r?k(t0)) ∈ (R+
0 )5

and one of the quantities s?k(t0), i?k(t0), h?k(t0), q?k(t0), or r?k(t0), is equal to zero.
Without loss of generality, suppose that s?k(t0) = 0. By (4), we obtain that

CDα
0+s

?
k(t0) = µα +

1

k
> 0,

and by continuity of CDα
0+s

?
k, we prove that CDα

0+s
?
k(t) > 0 at some interval [t0, t0+ζ),

for some ζ > 0. Applying Lemma 1, we conclude that s?k is strictly increasing on the
interval [t0, t0 + ζ), and so it is positive. In conclusion, s?k is non-negative. Since

CDα
0+i|i=0 = 1/k > 0, CDα

0+h|h=0 = uεαi(t) + 1/k > 0,

CDα
0+q|q=0 = (1− u)εαi(t) + 1/k > 0, CDα

0+r|r=0 = ταh(t) + γαq(t) + 1/k > 0,

using the same argument as before, we conclude that all the functions are non-
negative. By Lemma 2, letting k → ∞, we prove that the solution of (1)-(2) is
non-negative, which ends the proof.

4 Equilibrium points and basic reproduction number

In this section, we study the equilibrium points for (1). They are found by solving
the system

CDα
0+s(t) = 0; CDα

0+i(t) = 0; CDα
0+h(t) = 0; CDα

0+q(t) = 0; CDα
0+r(t) = 0.

(5)
It is easy to verity that PF = (1, 0, 0, 0, 0) is a solution of (5), and it is called a
disease free equilibrium point. To study its stability, we consider the Jacobian matrix
of system (1):

J(P ) =


−βαi− µα −βαs 0 0 0

βαi βαs− εα − µα 0 0 0
0 uεα −τα − µα 0 0
0 (1− u)εα 0 −γα − µα 0
0 0 τα γα −µα

 .
Evaluated at the disease free equilibrium point,

J(PF ) =


−µα −βα 0 0 0

0 βα − εα − µα 0 0 0
0 uεα −τα − µα 0 0
0 (1− u)εα 0 −γα − µα 0
0 0 τα γα −µα

 . (6)

The spectrum of matrix (6) is

σ(J(PF )) = {−τα − µα,−γα − µα,−µα, βα − εα − µα}.

Therefore, the disease free equilibrium point PF is locally asymptotically stable if

βα

εα + µα
< 1.
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In fact, an equilibrium point is locally asymptotically stable if all eigenvalues λi of
the Jacobian matrix verify the following condition [2]:

| arg(λi)| > α
π

2
.

The number

R0 =
βα

εα + µα

is known as basic reproduction number.

One other solution of (5), called endemic equilibrium point, is PE = (s?, i?, h?, q?, r?),
with

s? =
1

R0
, i? =

µα

βα
(R0 − 1), h? =

uεα

τα + µα
µα

βα
(R0 − 1),

q? =
(1− u)εα

γα + µα
µα

βα
(R0 − 1), r? =

(R0 − 1)εα

βα

(
uτα

τα + µα
+

(1− u)γα

γα + µα

)
,

if s?, i?, h?, q?, r? are between 0 and 1. With respect to this equilibrium point, the
spectrum of the Jacobian matrix is

σ(J(PE)) = {−τα − µα,−γα − µα,−µα, λE},

where

λE =
−µαR0 ±

√
(µαR0)2 − 4βαµα(R0 − 1)/R0

2
.

Thus, the endemic free equilibrium point PE is locally asymptotically stable if

| arg(λE)| > α
π

2
.

5 Numerical simulations

The method that we will use to solve numerically the optimal control problem consists
in replacing the Caputo fractional derivative by the Grünwald–Letnikov fractional
derivative. The procedure is explained next. First, consider a partition of the interval
[0, T ] given by the sequence of points tj = jT/N , for j = 0, 1, ..., N . Then, we use
the approximation

CDα
0+x(tj) ≈

1

hα

j∑
k=0

wαk x(tj−k)− x(0)

Γ (1− α)
(tj)

−α =: CD̃α
0+x(tj),

where wαk represent the generalization of binomial coefficients to real numbers:

wαk = (−1)k
(
α

k

)
.

With this, we rewrite the optimal control problem in its discrete form: minimize the
sum

ωu+
T

N

N∑
k=1

q(tk),
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subject to the system

CD̃α
0+s(tj) = µα − βαi(tj)s(tj)− µαs(tj)

CD̃α
0+i(tj) = βαi(tj)s(tj)− (εα + µα)i(tj)

CD̃α
0+h(tj) = uεαi(tj)− (τα + µα)h(tj)

CD̃α
0+q(tj) = (1− u)εαi(tj)− (γα + µα)q(tj)

CD̃α
0+r(tj) = ταh(tj) + γαq(tj)− µαr(tj),

(7)

and to the initial conditions

s(0) = s0, i(0) = i0, h(0) = h0, q(0) = q0, r(0) = r0, (8)

for j ∈ {1, . . . , N}. With respect to the parameters, the unit of time is a week. For
the birth and death rates, we fix µ = 0.0002. The transmission rate is β = 1, and in
one day the decision if an infected will receive or not treatment is taken so that ε = 7.
With treatment, the time needed to recover from the disease is 2 days, so τ = 7/2,
and without treatment, we need two weeks (γ = 1/2). We test our model with and
without control, fixing different values for u and ω. First, we solve system (7)-(8) and
consider the values u ∈ {0.1, 0.9}. The results when solving (7)-(8) are displayed in
Figures 2 and 3.
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Fig. 2: Results obtained for u = 0.1.

As expected, for smaller values of u, the number of infected going to quarantine is
higher. Now, we look again to system (7)-(8) from an optimal control point of view,
by also including the cost functional:

ωu+
T

N

N∑
k=1

q(tk)→ min .



122 Almeida

0 2 4 6 8 10 12 14 16 18 20

time (weeks)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
op

ul
at

io
n

susceptible
infected
hospitalized
quarantined
recovered

Fig. 3: Results obtained for u = 0.9.
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Fig. 4: Results obtained for ω = 1.

With respect to parameter ω, we consider ω ∈ {1, 10}, and the results are dis-
played in Figures 4 and 5. Increased the value of ω, the system will force the
control u to decrease, and this will produce an increase on the number of quarantined
individuals.



Chaotic Modeling and Simulation (CMSIM) 2: 115–124, 2020 123

0 2 4 6 8 10 12 14 16 18 20

time (weeks)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
op

ul
at

io
n

susceptible
infected
hospitalized
quarantined
recovered

Fig. 5: Results obtained for ω = 10.
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