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The construction of dynamic systems with a composite chaotic 

multiattractor [1,2], consisting of attractors of hyperhaotic systems [3-6], is much 

more difficult to build systems with a multiattractor on the basis of attractors of 

chaotic systems with one positive characteristic Lyapunov exponent [7-14]. 

This is due to the significantly more complex configuration of the 

regions of attraction of hyperhaotic attractors (which, consequently, are more 

difficult to combine in the design of a composite multiattractor). And significantly 

more complex nature of movements on the hyperchaotic attractors, compared 

with the movement on the chaotic attractors. These two difficulties create the 

problem of significant trajectory overrun during phase point transitions between 

local attractors. Which inevitably leads to considerable complication of the 

pattern of transitions of the phase point from one hyperchaotic attractor to 

another. For example, transitions occur not only between adjacent regions of 

attraction of phase trajectories, but also between local attractors located in phase 

cells that do not have a common boundary [2]. The study of such multiattractors 

is of particular interest [3], but no less interesting, search "classic" hyperchaotic 

multiattractors, in which all transitions between local attractors localized in the 

spaces between adjacent local attractors. 

The problem of reducing the run-out of phase trajectories is, in fact, a 

complex one, since its solution requires taking into account several almost 

equivalent factors. First of all, it is an increased dimension of the phase space, 

since hyperchaotic oscillations can exist only in the phase space with a dimension 

of at least 4. Second, there is a much greater complexity of motion on hyperhaotic 

attractors, characterized, in general, by large deviations from the equilibrium 

position (hence the more significant perturbations experienced by the phase 
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trajectory during transitions between local attractors). Third, a more complex 

configuration of hyperchaotic attractors and their areas of attraction. 

The solution to this problem can be found by choosing the right 

replication variables [2] – to ensure optimal alignment of the regions of attraction 

of the phase trajectories, providing minimal perturbation of the phase trajectory 

during transitions between local attractors. And also to limit the energy of motion 

when the trajectory deviates from the shortest path between adjacent attractors. 

Let us consider an example of a hyperhaotic multiattractor dynamic 

system, characterized by a small amount of run-off of phase trajectories during 

the transitions of motion from one attractor to another [4]: 
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where A, B, C, D, a, b, c, g are constants determining motion on local chaotic 

attractors; hk , dk are constants that specify the basic parameters of the of the 

replication operators Hk – the length of the phase cells along replication 

variables and the position of the boundary between the phase cells (hk), as well 

as the width of the transition layers between the phase cells (dk) [1,2]. 

Figures 1-6 show the projections of the multitractor of the system (1) on 

the planes (x1,x2), (x1,x3), (x1,x4), (x2,x3), (x2,x4), (x3,x4), corresponding to the case 

when the replicating functions are defined by the equation: 
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and the constants of the system have the following values A=2, B=2, C=2, D=-

0.7, a=1, b=-6, c=0, g=1.9, h2=2.2, h3=2.4, d2=d3=10. 

 

 
  

Fig.1. The projection of the multiattractor of the system (1), 

(2) on the plane (x1, x2). 
 

 

Fig.3. The projection of the multiattractor of the system (1), (2) on the 

plane (x1,x4). 
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Fig.5. The projection of the multiattractor of the system (1), (2) on the 

plane (x2,x4). 

 

Fig.6. The projection of the multiattractor of the system (1), (2) on 

the plane (x3,x4). 



 Chaotic Modeling and Simulation (CMSIM)  2: 125-131, 2020       129 
 

 

 
The system (1) has a 4-dimensional hyperchaotic multiattractor in which 

all transitions occur exclusively between neighboring local attractors. This is the 

result, first of all, of the optimal mutual orientation of local attractors, as well as 

of the measures taken to dissipation the energy of motion when the phase point 

deviates from the shortest path between neighboring local attractors. In system 

(1) this is achieved by choosing the shape of the transfer characteristic of the 

nonlinear element. In addition to the sections with the opposite slope, providing 

self-excitation of self-oscillations and limitation their amplitude, it contains two 

peripheral sections with zero steepness, designed to limit the energy of motion 

with a significant deviation of the phase point from the nearest attractor. 

In conclusion, we note that in the system (1) the phenomenon of 

transformation of random transitions between neighboring local 

attractors into different types of rotational self-oscillations of the 

active local attractor is observed (a local attractor on which 

chaotic oscillations occur at the current time). For example, in 

the special case of equations (1): 
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there is a systematic shift of the position of the active local 

attractor in the counterclockwise direction. The change in the 

numerical characteristic of this shift (the phase index Σ), which 
increases by one when the phase point moves from the attractor 

to the attractor in the direction of rotation of the clockwise and 

decreases by one when it moves in the opposite direction), is 

shown in Fig.7. Averaged over the 11 realizations of the random 

process τ(χΣ) given in this figure, the rate of change of the phase 

index is -810-4 with the standard deviation 2.510-4. 
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The expressed systematic displacement of the active region of 

attraction of phase trajectories is also observed in the following 

variants of the system (1) having a two-dimensional composite 

multiattractor, 

     432211 x,x,xH,xHFx 


,     433211 x,xH,x,xHFx 


 and 

    443221 xH,x,xH,xFx 


.  

Under the same conditions, the following values of the average 

rate of change of the phase index are observed in these systems: 

(-44.5)10-4, (+11.54)10-4, (-71)10-4, accordingly. 

 

Since the displacement of the active local attractor is nothing but 

the evolution of the state of the dynamic system, it can be stated 

that the considered system is characterized by the transformation 

of random transitions of the phase point between the elements of 

the multiattractor into a directed evolution of the state of the 

system as a whole. 

Fig.7. 11 realizations of a random process () (thin broken 

lines) and the change of this parameter according to the average 
implementation rate (a wide straight line). 
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