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Abstract. The occurrence of horseshoe chaos in a nonlinearly damped Duffing-
vander Pol (DVP) oscillator with three different forms of asymmetrical double-well
potential is analyzed. Three forms of asymmetry can be introduced by varying the
depth of the left-well alone, the location of the local minimum of the left-well alone
and both the depth and local minimum of the left-well respectively, keeping the shape
of the right-well unchanged. We assume the nonlinear damping term is proportional
to the power of velocity (ẋ) in the form |ẋ|P−1. Applying the Melnikov analytical
technique, the threshold condition for the occurrence of horseshoe chaos is obtained
for each asymmetrical potential. Melnikov threshold curves are drawn in (f − ω)
parameter space. By varying the parameter f , parametric regimes where suppression
or induce of chaos are predicted. The analytical predictions are verified by numerical
simulation.

1 Introduction

Over the past years the possibility of horseshoe dynamics for periodically forced
symmetric and asymmetrical systems with linear damping has become a well
established fact [1–10]. In recent years there has been a great deal of interest on
the study of nonlinearly damped nonlinear systems [11–25]. In the present work
we wish to study the occurrence of horseshoe chaos in a nonlinearly damped
Duffing-vander Pol oscillator with three different asymmetric double-well po-
tentials both analytical and numerical techniques.

A horseshoe is the occurrence of a transverse intersection of the stable
and unstable manifolds of a saddle fixed point in the Poincaré map and is
a global phenomenon [1,2]. The appearance can be predicted analytically by
employing the Melnikov technique [1,2,26–32]. This technique essentially gives
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a criterion for a transverse intersection of the stable and unstable manifolds of
the homoclinic / heteroclinic orbits which imply horseshoe chaos.

The equation of motion of a nonlinearly damped Duffing-vander Pol (DVP)
oscillator is given by

ẍ+ γ ẋ (1− x2) |ẋ|p−1 +
dVi
dx

= f sinωt, (1)

where x stands for the displacement from the equilibrium position, p is the
damping exponent, γ > 0 is the damping parameter of the system and f and
ω are the amplitude and frequency of the external time dependent periodic
driving force. We consider three different asymmetric double-well potentials
V1, V2 and V3 is given by

Vi(x) =

−
1
2ω

2
0x

2 + 1
4βx

4, x ≥ 0

− 1
2Aiω

2
0x

2 + 1
4Biβx

4, x < 0
(2)

where i = 1, 2, 3, A1 = B1 = α, A2 = 1/α2, B2 = A2
2, A3 = 1, B3 = 1/α2 and

ω2
0 , α and β > 0. In V1, V2 and V3 the depth of the left-well alone, the location

of the local minimum of the left-well alone and both the depth and the local
minimum of the left-well respectively can be varied by the control parameter
α by keeping the shape of the right-well unchanged. For V1 the unperturbed
system is

ẍ− ω2
0x+ βx3 = 0 x ≥ 0 (3)

ẍ− α(ω2
0x− βx3) = 0 x < 0 (4)

Similarly, we can write the equation of motion separately for x ≥ 0 and x <
0 for the system with the potentials V2 and V3. We call the systems with
the asymmetric potentials V1, V2 and V3 as system-1, system-2 and system-3
respectively. Figure 1 depicts the effect of the asymmetry parameter α on the
three potentials for β = 5.0 and ω2

0 = 1.0. A similar nonlinear damping term
[15,16,20,23,24,33,34]and asymmetric potentials [8,35–37] was previously used
by many researchers.

The objective of the present work is to analyze influence of the asymme-
try parameter α and damping exponent P on the onset of homoclinic chaos,
asymptotic cross-well chaos and bifurcation phenomenon in the DVP system
with the three distinct potentials V1, V2 and V3. To get an analytical expression
for the onset of homoclinic chaos (horseshoe chaos) we can use the Melnikov
analytical method. Using the Melnikov method we analyze the role of asym-
metry parameter α on the onset of homoclinic chaos in the left-well and in
the right-well. Then we carry out numerical study on the onset of asymptotic
chaos and bifurcation phenomenon. We find certain interesting and nontrivial
results.

To be specific, in Section 2, we present the calculation of Melnikov func-
tion for the three asymmetrical systems. In Section 3, we obtain the Melnikov
threshold condition for the transverse intersections of homoclinic orbits for non-
linearly damped DVP system separately for each of the asymmetric system. We
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Fig. 1. The potentials V1, V2 and V3 for three values of α. In all the subplots the
potential curves a, b and c correspond to α = 0.5, 1 and 1.5 respectively. α = 1
corresponds to the symmetric double-well potential The other parameters are fixed
as ω2

0 = 1 and β = 5.

plot the Melnikov threshold curve in (f − ω) parameter plane for all the sys-
tems where f and ω are the amplitude and frequency of the external periodic
sinusoidal force. We verify the analytical prediction with the numerically cal-
culated critical values of f at which the transverse intersections of homoclinic
orbits in Section 4. Finally Section 5 contains the concluding remarks.

2 Calculation of Melnikov Functions for the Three
Asymmetric Potentials

The equation of motion of the perturbed systems corresponding to the poten-
tials V1, V2 and V3 are given by

ẋ = y (5)

ẏ = −dVi
dx

+ ε[−γ ẋ (1− x2)|ẋ|p−1 + f sinωt] (6)

where i = 1, 2, 3 and ε is a small parameter so that the damping and forcing
terms are perturbations to the cubic oscillator. In a very recent work, Sethu
Meenakshi et al. [33,34] studied the effect of amplitude modulated signal in
nonlinearly damped symmetrical DVP system. The homoclinic orbits of the
unperturbed system (ε = 0) with the potentials V1, V2 and V3 are given by

xi,h(t) =


x+i,h(t) =

√
2ω2

0

β sech(
√
ω2
0t), x ≥ 0

x−i,h(t) = −
√

2ω2
0

β λi sech(δit) x < 0

(7)
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Fig. 2. Homoclinic orbits of the three unperturbed systems for α = 0.5(a), 1 (b) and
1.5 (c). The other parameters are fixed as ω2

0 = 1 and β = 5.

and

yi,h(t) =


y+i,h(t) = −ω2

0

√
2
β sech(

√
ω2
0t)×

tanh(
√
ω2
0t), x ≥ 0

y−i,h(t) = qi ω
2
0

√
2
β sech(δiω

2
0t)×

tanh(δiω
2
0t) x < 0

(8)

where i = 1, 2, 3 and λ1 = q2 = δ3 = 1, λ2 = λ3 = q1 = q3 = δ1 = α and
δ2 = 1/α. The part of the homoclinic orbits moving away from the saddle
point in the region x < 0 and x > 0 are termed as unstable manifolds W−u and
W+
u respectively. Similarly the saddle W−s and W+

s are the stable manifolds
approaching the saddle in the regions x < 0 and x > 0 respectively. Figure 2
shows the phase portrait of the unperturbed three asymmetrical systems for
α = 0.5, 1.0 and 1.5 with ω2

0 = 1 and β = 5.

For a system of the form

ẋ = f1(x, y) + εg1(x, y, t) (9)

ẏ = f2(x, y) + εg2(x, y, t) (10)
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where g1 and g2 are periodic in t with period T . For a standard form of
Eqs.(9-10), the Melnikov integral is

M(t0) =

∫ +∞

−∞
h0(Xh(τ)) ∧ h1(Xh(τ), t) × (11)

exp

[
−
∫ T

0

trace [DX(h0(Xh(s)))] ds

]
dt

whereXh = (xh, yh) represents homoclinic orbits, h0 = (f1, g1), h1 = (f2, g2), h0∧
h1 = f1g2−f2g1 and DX denotes the partial derivatives with respect to X. The
homoclinic orbits of the three unperturbed asymmetrical systems are different
in the left-well and right-well. Therefore the analytical expression for M(t0)
will be different for x < 0 and x > 0.

For the asymmetrical DVP systems Eqs.(5-6), the Melnikov function is

M±(t0) = −γ
∫ +∞

−∞
|y±h |P+1dt

∫ +∞

−∞
y±h f sinωt dt (12)

where ′+′ and ′−′ signs refer to the regions x > 0 and x < 0 respectively. The
Melnikov function M±(t0 for the three systems are calculated as

M+
1,2,3(t0) = M+(t0) = A+B +

fc

α
sech(D/α) (13)

× cosωt0

M−1 (t0) = −A αP +
fc

α
sech(D/α) cosωt0 (14)

M−2 (t0) = −A α+ α2fc sech(D α) cosωt0 (15)

M−3 (t0) = −A αP+1 + αfc sech(D) cosωt0. (16)
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C =
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2

β
πω (19)

D = πω/2
√
ω2
0 . (20)

3 Analytical results

In this section we analyze the analytical results for the occurrence of horseshoe
chaos in system-1, system-2 and system-3. The intersection of the homoclinic
orbits, that is intersections of stable and unstable manifolds are the necessary
conditions for the existence of horseshoe chaos. Homoclinic bifurcation occurs
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Fig. 3. Melnikov threshold curves for homoclinic intersections in (f − ω) parameter
plane for fixed values of α and P for the system-1. The other parameters are fixed
as ω2

0 = 1.0, γ = 0.4 and β = 5.0.

when M(t0) has a simple zero and changes sign. The necessary conditions on
the parameters of the systems for horseshoe chaos can be obtained from the
Eqs.(13-20). For all the three systems the threshold condition for horseshoe
chaos in the right-well is given by

| f |≥| f+M | =
| A+B |
| C | cosh(D) (21)

We can obtained similar conditions for horseshoe chaos in the left-well for the
three systems and denote the threshold values of f as f−M . In general f+M 6= f−M
for α 6= 1 and f+M = f−M for α = 1. The threshold conditions for horseshoe
chaos for the system-1, system-2 and system-3 in the left-well are as follows

| f |≥| f−M | =
| A |
| C | cosh(D/α) αP+1 (22)

| f |≥| f−M | =
| A |
| C | cosh(Dα) αP−1 (23)

| f |≥| f−M | =
| A |
| C | cosh(D) αP (24)

Threshold curves for horseshoe chaos can be from the Eqs.(21-24) in (f, ω)
parameters space. We fix the parameters values as β = 5.0, γ = 0.4, P =
0.1, 0.5, 1.0, 2.0 and α = 0.5, 1.0, 1.5. A typical plot of f±M against ω is shown in
Figure 3 for the system-1 with the fixed values of α and P . Below the threshold
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Fig. 4. Melnikov threshold curves for homoclinic intersections in (f − ω) parameter
plane for fixed values of α and P for the system-2. The other parameters are fixed
as ω2

0 = 1.0, γ = 0.4 and β = 5.0.

Fig. 5. Melnikov threshold curves for homoclinic intersections in (f − ω) parameter
plane for fixed values of α and P for the system-3. The other parameters are fixed
as ω2

0 = 1.0, γ = 0.4 and β = 5.0.

curves, no transverse intersection of stable and unstable manifolds of the saddle
occurs and above the threshold curve, the transverse intersection of orbits of
the saddle occurs. Threshold curves for onset of horseshoe chaos in the (f, ω)
parameters plane for the system-2 and system-3 are plotted in Figure 4 and
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Figure 5. As a result our analytical investigations using Melnikov method, we
have found certain interesting and nontrivial results.

• Threshold curves are nonlinear for all the systems.
• Threshold curves are nonintersecting and smooth variation of fM is found

only in the system-3 but in system-1 and system-2 the threshold curves are
intersecting with each other.

• One clear observation from the Figure 5 is that for α < 1 the occurrence
of the right-well homoclinic bifurcation alone cannot be observed for any
set of values of (f, ω). Similarly α > 1 the left-well homoclinic intersection
alone is not possible.

• In system-1 and system-2, for a particular values of ω the threshold values
f−M = f+M . For example, in Figure 3(a) for P = 0.1, f−M = f+M = 0.75 at
ω = 1.0 with α = 1.0 and 1.5. For ω = 0.52, f−M = f+M = 0.72 with α = 0.5
and 1.0. Similarly in system-2, the threshold curves for α = 0.5 and 1.0
meet at ω = 1.02 and for α = 1.0 and 1.5 meet at ω = 0.65 which are
clearly shown in Figure 4(a).

• In system-3 for each value of α (α 6= 1) and P , f−M is always different from
f+M that is f−M 6= f+M . For example, in Figure 5(a) for P = 0.1, ω = 1.0,
f−M = 0.65 for α = 0.5 and f+M = 0.72 for α = 1.0. Similar dynamics is
observed for all values of P and α.

• In system-3 when P increases from small values the threshold values f±M
decreases, which is clearly evident in Figure 5.

4 Numerical results

In the previous section we focussed our study on analytical prediction of thresh-
old values of control parameter f for transverse intersections of homoclinic or-
bits. In this section we numerically integrate the equation of motion of the
three asymmetrical systems and verify the analytical results obtained from
the Melnikov analytical technique. First we consider the system-1. For
α = 0.5, P = 0.5 and ω = 1.0, we find f−M = 0.8616 and f+M = 0.5275, that is
system-1 has f−M > f+M . In this case, when f is varied from a small value, we
have the scenario of no transverse intersection of stable and unstable parts of
W+ and W− for 0 < f < f+M ; transverse intersection of the manifolds W+

s and
W−u in the right-well alone for f+M < f < f−M and intersection of the stable and
unstable parts of W+ and W− in the two-wells for f > f−M . Figure 6 shows
numerically computed stable and unstable manifolds of homoclinic orbits for
three values of f . No intersection of stable and unstable parts of W+ and W−

occur for f < f+M (Figure 6(a)). In Figure 6(b) where f = 0.65 lying between
f+M and f−M intersection of the stable and unstable parts of W+ alone are seen.
For f = 0.9 that is f > f−M , intersections both the left-well and right-well orbits
occur (Figure 6(c)).

For system-2 with α = 0.5, P = 0.5 and ω = 0.5 we find f−M = 0.3865
and f+M = 0.5995, that is the system-2 has f−M < f+M . In this case, when f
is varied from a small value, transverse intersection of manifolds of the sad-
dle in the right-well is not possible but other cases are possible. For f < f−M
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Fig. 6. Numerically computed stable and unstable manifolds of saddle for three values
of f for the system-1. The values of the other parameters are γ = 0.4, α = 0.5,
β = 5.0, ω2

0 = 1.0, ω = 1.0 and P = 0.5.

Fig. 7. Numerically computed stable and unstable manifolds of saddle for three values
of f for the system-2. The values of the other parameters are γ = 0.4, α = 0.5,
β = 5.0, ω2

0 = 1.0, ω = 1.0 and P = 0.5.

transverse intersection of the stable and unstable manifolds W+ and W− occur
(Figure 7(a)). In the interval 0.3865 < f < 0.5995, homoclinic intersections of
W+ and W− alone occur in the left-well (Figure 7(b)) and transverse inter-
sections of both the left-well and right-well orbits occur for f > 0.5995(= f+M )
(Figure 7(c)). Similar dynamics is found in system-3 also. For example when
α = 0.5, P = 0.5 and ω = 1.0, Melnikov threshold values are f−M = 0.373 and
f+M = 0.5275. As shown in Figure 8(a) for f = 0.32 < f−M , no transverse inter-
sections occur; at f = 0.45 (Figure 8(b)) which lies between (f−M , f

+
M ) trans-

verse intersections of the left-well manifolds alone occur and for f = 0.65 > f+M
(Figure 8(c)) the stable and unstable parts of W+ and W− of both wells inter-
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Fig. 8. Numerically computed stable and unstable manifolds of saddle for three values
of f for the system-3. The values of the other parameters are γ = 0.4, α = 0.5,
β = 5.0, ω2

0 = 1.0, ω = 1.0 and P = 0.5.

sect. Above the threshold curves it is possible to have either asymptotic chaos

Fig. 9. Bifurcation diagrams of the system-1 with (a) the initial condition chosen in
the left-well and (b) the initial condition chosen in the right-well for the starting value
of f for α = 0.5, 1.5, ω = 0.5, γ = 0.4 and P = 2.0.

or transient chaos followed by asymptotically periodic motion. In order to know
the nature of attractors of the nonlinearly damped system near the horseshoe
threshold curve we have further numerically studied the Eq.(1) and the onset
of cross-well chaos. Figure 9(a) and Figure 9(b) show two bifurcation diagrams
of the system-1, one with the initial conditions chosen in the left-well and other
with the initial conditions chosen in the right-well for the starting value of f .
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The value of the other parameters are P = 2.0, α = 0.5, ω2
0 = 1, β = 5 and

ω = 1.0. In the left-well (Figure 9(a)) at f = 0.2316 (which is close to the
Melnikov threshold value f−M = 0.2245), the periodic orbits become unstable
and the trajectories with various initial conditions jump to the right-well after
a long transient and remains there forever. When the initial conditions chosen
in the right-well, the bifurcation pattern is completely different, only period-T
orbit occurs in the interval 0 < f < 0.2316. At f = 0.2316 onset of cross-well
chaos occurs and at which the chaotic attractor jumps from right-well to left-
well. In Figure 9(c) and Figure 9(d) we analyze the case for α > 1 (α = 1.5)
with the initial conditions chosen in the left- and right-wells for the starting
value of f . Transcritical bifurcation occurs in Figure 9(d) but it is absent in
Figure 9(c). Similar dynamics can be observed in system-2 and system-3 also
near the horseshoe threshold.

Figure 10(a) and Figure 10(b) show the bifurcation diagrams of linearly
damped (P = 1) asymmetrical system-1 for α = 0.5 and α = 1.5 with the initial
condition chosen in the right-well. Figure 11 shows the bifurcation diagrams
of of linearly damped (P = 1) system-1 for f ∈ [0.0, 0.15] and α = 0.9 with
the initial conditions chosen in the left-well (Figure 11(a)) and in the right-well
(Figure 11(b)). Suppression or enhancement of chaos is observed in both wells
due to the nonlinear damping (P ) term, which is clearly evident in Figures 9,
Figure 10 and Figure 11.

Fig. 10. Bifurcation diagrams of the system-1 with the initial condition chosen in the
right-well for the starting value of f for α = 0.5, 1.5, ω = 1.0, γ = 0.4 and P = 1.0.

5 Conclusion

In this paper we considered a nonlinearly damped and periodically driven
Duffing-vander Pol oscillator with three asymmetric potentials. We investi-
gated the occurrence of horseshoe chaos by varying the control parameter f
both analytical and numerical techniques. Applying Melnikov analytical tech-
nique we obtained the threshold condition for onset of horseshoe chaos. Thresh-
old curves are drawn on (f, ω) parameters space which is separate the chaotic
and periodic motions. For nonlinearly damped (P 6= 1) asymmetrical system-3,
our study shows that Melnikov threshold values (f±M ) decrease when the damp-
ing exponent increases. In the asymmetrical system-1 and system-2, for a par-
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Fig. 11. Bifurcation diagrams of the system-1 with (a) the initial condition chosen
in the left-well and (b) the initial condition chosen in the right-well for the starting
value of f for α = 0.9, ω = 1.0, γ = 0.4 and P = 1.0.

ticular values of ω the the threshold values f−M = f+M like symmetrical (P = 1)
DVP system. For a certain range of values of the control parameter f there is
a possibility to suppress and enhancement of chaos in the left- and right-wells.
Furthermore it would be important to analyze the occurrence of various nonlin-
ear phenomena such as hysteresis, coexistence of multiple attractors, stochastic
resonance, vibrational resonance and Ghost-vibrational resonance
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